cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329486 a(n) = 3*A006519(n)/2 + n/2 where A006519(n) is the highest power of 2 dividing n.

This page as a plain text file.
%I A329486 #18 Jul 10 2022 16:11:23
%S A329486 2,4,3,8,4,6,5,16,6,8,7,12,8,10,9,32,10,12,11,16,12,14,13,24,14,16,15,
%T A329486 20,16,18,17,64,18,20,19,24,20,22,21,32,22,24,23,28,24,26,25,48,26,28,
%U A329486 27,32,28,30,29,40,30,32,31,36,32,34,33,128,34,36,35,40
%N A329486 a(n) = 3*A006519(n)/2 + n/2 where A006519(n) is the highest power of 2 dividing n.
%C A329486 A combination of sequences A006519 (highest power of 2 dividing n) and A003602 (Kimberling's paraphrases).
%H A329486 Michael De Vlieger, <a href="/A329486/b329486.txt">Table of n, a(n) for n = 1..10000</a>
%t A329486 Array[3*2^(IntegerExponent[#, 2] - 1) + #/2 &, 68] (* _Michael De Vlieger_, Jul 10 2022 *)
%o A329486 (PARI) a(n) = (3*2^valuation(n, 2) + n)/2; \\ _Michel Marcus_, Mar 03 2020
%o A329486 (Python)
%o A329486 def A329486(n): return (3*(n&-n)+n)>>1 # _Chai Wah Wu_, Jul 10 2022
%Y A329486 Cf. A006519, A003602.
%K A329486 nonn
%O A329486 1,1
%A A329486 _Markus Rissanen_, Nov 14 2019
%E A329486 Edited and more terms from _Michel Marcus_, Mar 03 2020