This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329530 #5 Nov 15 2019 21:36:08 %S A329530 0,1,16,66,172,355,636,1036,1576,2277,3160,4246,5556,7111,8932,11040, %T A329530 13456,16201,19296,22762,26620,30891,35596,40756,46392,52525,59176, %U A329530 66366,74116,82447,91380,100936,111136,122001,133552,145810,158796,172531,187036,202332,218440 %N A329530 a(n) = n * (7*binomial(n, 2) + 1). %C A329530 Centered heptagonal prism numbers. %D A329530 E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 144. %H A329530 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A329530 G.f.: x * (1 + 12*x + 8*x^2) / (1 - x)^4. %F A329530 E.g.f.: exp(x) * x * (2 + 14*x + 7*x^2) / 2. %F A329530 a(n) = n * (7*n^2 - 7*n + 2) / 2. %F A329530 a(n) = n * (7*A000217(n-1) + 1). %F A329530 a(n) = n * A069099(n). %t A329530 Table[n (7 Binomial[n, 2] + 1), {n, 0, 40}] %t A329530 nmax = 40; CoefficientList[Series[x (1 + 12 x + 8 x^2)/(1 - x)^4, {x, 0, nmax}], x] %t A329530 LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 66}, 41] %Y A329530 Centered m-gonal prism numbers: A100175 (m = 3), A059722 (m = 4), A006564 (m = 5), A005915 (m = 6), this sequence (m = 7), A139757 (m = 8), A006566 (m = 9). %Y A329530 Cf. A000217, A002413, A006597, A024966, A069099. %K A329530 nonn,easy %O A329530 0,3 %A A329530 _Ilya Gutkovskiy_, Nov 15 2019