This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329539 #11 Jul 28 2021 16:44:52 %S A329539 3618,5840,7716,17502,19460,22398,23520,26852,33824,41202,45848,47328, %T A329539 62138,72950,82722,101084,118062,127160,128784,134012,136380,148940, %U A329539 165240,173658,175220,175310,177516,187556,193692,203310,230802,234032,279102,281754,285518,289970,295196,298652 %N A329539 Numbers m such that the sum of the first m primes as well as the sum of the squares and the sum of the cubes of the first m primes are all prime. %H A329539 G. L. Honaker, Jr. and Chris Caldwell, <a href="https://primes.utm.edu/curios/page.php?short=3618">Prime Curios! 3618</a> %H A329539 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_978.htm">Puzzle 978. Improve this curio</a>, Prime Puzzles and Problems Connection. %t A329539 Module[{nn=300000,prs,m1,m2,m3},prs=Prime[Range[nn]];m1=Accumulate[ prs];m2 = Accumulate[prs^2];m3=Accumulate[prs^3];Position[Thread[ {m1,m2,m3}],_? (Total[ Boole[ PrimeQ[#]]]==3&)]]//Flatten (* _Harvey P. Dale_, Jul 28 2021 *) %o A329539 (PARI) s=0; t=0; u=0; n=0; forprime(p=2, 1e6, s+=p; t+=p^2; u+=p^3; n++; if(isprime(u) && isprime(t) && isprime(s), print1(n, ", "))) %Y A329539 Cf. A013916, A098561, A124225. %K A329539 nonn %O A329539 1,1 %A A329539 _Michel Marcus_, Nov 16 2019 %E A329539 Name (description) modified by _Harvey P. Dale_, Jul 28 2021