This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329547 #51 Sep 18 2024 16:33:10 %S A329547 1,2,2,3,3,4,4,5,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,15,16,16,17, %T A329547 17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,27,28,29,29, %U A329547 30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40 %N A329547 Number of natural numbers k <= n such that k^k is a square. %C A329547 For even k, k^k is always a square. For odd k, k^k is a square if and only if k is a square. %C A329547 It seems the unrepeated terms form A266304 \ {0}. - _Ivan N. Ianakiev_, Nov 21 2019 %C A329547 Indices of unrepeated terms are A081349. - _Rémy Sigrist_, Dec 07 2019 %H A329547 David A. Corneth, <a href="/A329547/b329547.txt">Table of n, a(n) for n = 1..10000</a> %F A329547 a(n) = floor(n/2) + ceiling(floor(sqrt(n))/2). %e A329547 a(5) = 3 because among 1^1, 2^2, ..., 5^5 there are 3 squares: 1^1, 2^2, and 4^4. %t A329547 Table[Floor[n/2] + Ceiling[Floor[Sqrt[n]]/2], {n, 1, 100}] %o A329547 (PARI) a(n) = sum(k=1, n, issquare(k^k)); \\ _Michel Marcus_, Nov 17 2019 %o A329547 (PARI) first(n) = my(res=vector(n), inc); res[1] = 1; for(i=2, n, inc = (1-(i%2)) || issquare(i); res[i] = res[i-1] + inc); res \\ _David A. Corneth_, Dec 07 2019 %o A329547 (PARI) a(n) = n\2 + (sqrtint(n)+1)\2 \\ _David A. Corneth_, Dec 07 2019 %o A329547 (Python) %o A329547 from math import isqrt %o A329547 def A329547(n): return (n>>1)+(isqrt(n)+1>>1) # _Chai Wah Wu_, Sep 18 2024 %Y A329547 Cf. A081349, A176693, A266304. %K A329547 nonn,easy %O A329547 1,2 %A A329547 _Pablo Hueso Merino_, Nov 16 2019