This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329552 #12 Nov 18 2019 08:47:59 %S A329552 1,2,39,195,5655,62205,2674815 %N A329552 Smallest MM-number of a connected set of n sets. %C A329552 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %e A329552 The sequence of terms together with their corresponding systems begins: %e A329552 1: {} %e A329552 2: {{}} %e A329552 39: {{1},{1,2}} %e A329552 195: {{1},{2},{1,2}} %e A329552 5655: {{1},{2},{1,2},{1,3}} %e A329552 62205: {{1},{2},{3},{1,2},{1,3}} %e A329552 2674815: {{1},{2},{3},{1,2},{1,3},{1,4}} %t A329552 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A329552 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A329552 da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&]; %t A329552 Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}] %Y A329552 MM-numbers of connected set-systems are A328514. %Y A329552 The weight of the system with MM-number n is A302242(n). %Y A329552 Connected numbers are A305078. %Y A329552 Maximum connected divisor is A327076. %Y A329552 BII-numbers of connected sets of sets are A326749. %Y A329552 The smallest BII-number of a connected set of n sets is A329625(n). %Y A329552 Allowing edges to have repeated vertices gives A329553. %Y A329552 Requiring the edges to form an antichain gives A329555. %Y A329552 The smallest MM-number of a set of n nonempty sets is A329557(n). %Y A329552 Cf. A048143, A056239, A112798, A302494, A304714, A304716, A305079, A322389, A328513, A329554, A329556, A329558. %Y A329552 Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters). %K A329552 nonn,more %O A329552 0,2 %A A329552 _Gus Wiseman_, Nov 17 2019