This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329553 #12 Nov 18 2019 08:48:10 %S A329553 1,2,21,195,1365,25935,435435 %N A329553 Smallest MM-number of a connected set of n multisets. %C A329553 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %e A329553 The sequence of terms together with their corresponding systems begins: %e A329553 1: {} %e A329553 2: {{}} %e A329553 21: {{1},{1,1}} %e A329553 195: {{1},{2},{1,2}} %e A329553 1365: {{1},{2},{1,1},{1,2}} %e A329553 25935: {{1},{2},{1,1},{1,2},{1,1,1}} %e A329553 435435: {{1},{2},{1,1},{3},{1,2},{1,3}} %t A329553 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A329553 zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A329553 dae=Select[Range[100000],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&]; %t A329553 Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}] %Y A329553 MM-numbers of connected sets of sets are A328514. %Y A329553 The weight of the system with MM-number n is A302242(n). %Y A329553 Connected numbers are A305078. %Y A329553 Maximum connected divisor is A327076. %Y A329553 BII-numbers of connected set-systems are A326749. %Y A329553 The smallest BII-number of a connected set-system is A329625. %Y A329553 The case of strict edges is A329552. %Y A329553 The smallest MM-number of a set of n nonempty sets is A329557(n). %Y A329553 Cf. A056239, A112798, A302494, A305079, A329554, A329555, A329556, A329558. %Y A329553 Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters). %K A329553 nonn,more %O A329553 0,2 %A A329553 _Gus Wiseman_, Nov 17 2019