This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329556 #5 Nov 18 2019 08:48:39 %S A329556 1,2,26,754,32422,1523834 %N A329556 Smallest MM-number of a set of n sets with no singletons. %C A329556 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %e A329556 The sequence of terms together with their corresponding systems begins: %e A329556 1: {} %e A329556 2: {{}} %e A329556 26: {{},{1,2}} %e A329556 754: {{},{1,2},{1,3}} %e A329556 32422: {{},{1,2},{1,3},{1,4}} %e A329556 1523834: {{},{1,2},{1,3},{1,4},{2,3}} %t A329556 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A329556 dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],_?PrimeQ]&]; %t A329556 Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}] %Y A329556 MM-numbers of sets of sets with no singletons are A329630. %Y A329556 The case without empty edges is A329554. %Y A329556 MM-numbers of sets of sets are A302494. %Y A329556 Cf. A056239, A112798, A302242, A329552, A329557, A329558. %Y A329556 Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters). %K A329556 nonn,more %O A329556 0,2 %A A329556 _Gus Wiseman_, Nov 17 2019