This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329560 #7 Nov 29 2019 01:39:23 %S A329560 0,3,9,10,11,12,18,33,52,129,130,131,132,136,137,138,139,140,144,146, %T A329560 148,160,161,164,176,180,192,258,264,266,268,274,288,292,304,308,513, %U A329560 520,521,524,528,532,545,560,564,772,776,780,784,788,800,804,816,820,832 %N A329560 BII-numbers of antichains of sets with empty intersection. %C A329560 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. %C A329560 A set-system is an antichain if no edge is a proper subset of any other. %C A329560 Empty intersection means there is no vertex in common to all the edges %e A329560 The sequence of terms together with their binary expansions and corresponding set-systems begins: %e A329560 0: 0 ~ {} %e A329560 3: 11 ~ {{1},{2}} %e A329560 9: 1001 ~ {{1},{3}} %e A329560 10: 1010 ~ {{2},{3}} %e A329560 11: 1011 ~ {{1},{2},{3}} %e A329560 12: 1100 ~ {{1,2},{3}} %e A329560 18: 10010 ~ {{2},{1,3}} %e A329560 33: 100001 ~ {{1},{2,3}} %e A329560 52: 110100 ~ {{1,2},{1,3},{2,3}} %e A329560 129: 10000001 ~ {{1},{4}} %e A329560 130: 10000010 ~ {{2},{4}} %e A329560 131: 10000011 ~ {{1},{2},{4}} %e A329560 132: 10000100 ~ {{1,2},{4}} %e A329560 136: 10001000 ~ {{3},{4}} %e A329560 137: 10001001 ~ {{1},{3},{4}} %e A329560 138: 10001010 ~ {{2},{3},{4}} %e A329560 139: 10001011 ~ {{2},{3},{4}} %e A329560 140: 10001100 ~ {{1,2},{3},{4}} %e A329560 144: 10010000 ~ {{1,3},{4}} %e A329560 146: 10010010 ~ {{2},{1,3},{4}} %e A329560 148: 10010100 ~ {{1,2},{1,3},{4}} %t A329560 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A329560 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A329560 Select[Range[0,100],#==0||Intersection@@bpe/@bpe[#]=={}&&stableQ[bpe/@bpe[#],SubsetQ]&] %Y A329560 Intersection of A326911 and A326704. %Y A329560 BII-numbers of intersecting set-systems with empty intersecting are A326912. %Y A329560 Cf. A000120, A048793, A070939, A326031, A326701, A328671, A329561, A329626, A329628, A329661. %K A329560 nonn %O A329560 1,2 %A A329560 _Gus Wiseman_, Nov 28 2019