This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329561 #5 Nov 29 2019 01:39:30 %S A329561 0,1,2,4,8,16,20,32,36,48,52,64,128,256,260,272,276,320,512,516,544, %T A329561 548,576,768,772,832,1024,1040,1056,1072,1088,2048,2064,2080,2096, %U A329561 2112,2304,2320,2368,2560,2592,2624,2816,2880,3072,3088,3104,3120,3136,4096 %N A329561 BII-numbers of intersecting antichains of sets. %C A329561 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. %C A329561 A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other. %e A329561 The sequence of terms together with their corresponding set-systems begins: %e A329561 0: {} %e A329561 1: {{1}} %e A329561 2: {{2}} %e A329561 4: {{1,2}} %e A329561 8: {{3}} %e A329561 16: {{1,3}} %e A329561 20: {{1,2},{1,3}} %e A329561 32: {{2,3}} %e A329561 36: {{1,2},{2,3}} %e A329561 48: {{1,3},{2,3}} %e A329561 52: {{1,2},{1,3},{2,3}} %e A329561 64: {{1,2,3}} %e A329561 128: {{4}} %e A329561 256: {{1,4}} %e A329561 260: {{1,2},{1,4}} %e A329561 272: {{1,3},{1,4}} %e A329561 276: {{1,2},{1,3},{1,4}} %e A329561 320: {{1,2,3},{1,4}} %e A329561 512: {{2,4}} %e A329561 516: {{1,2},{2,4}} %t A329561 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A329561 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A329561 Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&] %Y A329561 Intersection of A326704 (antichains) and A326910 (intersecting). %Y A329561 Covering intersecting antichains of sets are counted by A305844. %Y A329561 BII-numbers of antichains with empty intersection are A329560. %Y A329561 Cf. A000120, A048143, A048793, A070939, A087086, A305857, A306007, A326031, A326361, A326912, A329628. %K A329561 nonn %O A329561 1,3 %A A329561 _Gus Wiseman_, Nov 28 2019