A329571 a(n) = Product_{prime p} p^floor(log_p P) with P = A329570(n) the least prime with log_p P >= valuation(n,p) for all primes p.
2, 2, 6, 60, 60, 6, 420, 27720, 27720, 60, 27720, 60, 360360, 420, 60, 12252240, 12252240, 27720, 232792560, 60, 420, 27720, 5354228880, 27720, 2329089562800, 360360, 2329089562800, 420, 2329089562800, 60, 72201776446800, 5342931457063200, 27720, 12252240, 420, 27720, 5342931457063200, 232792560, 360360, 27720, 219060189739591200, 420, 9419588158802421600, 27720
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2308
- Srinivasa Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, Ser. 2, Vol. XIV, No. 1 (1915), pp 347-409. A variant of better quality with an additional footnote is available at Ramanujan Papers.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{P = NextPrime[Max[Power @@@ FactorInteger[n]] - 1], p}, p = Select[Range[P], PrimeQ]; Times @@ (p^Floor[Log[p, P]])]; a[1] = 2; Array[a, 50] (* Amiram Eldar, Jan 17 2025 *)
-
PARI
apply( {A329571(n)=vecprod([p^logint(n,p)|p<-primes([2,n=A329570(n)])])}, [1..44])
Comments