cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329573 For all n >= 1, exactly 12 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct positive numbers.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 27, 14, 20, 33, 34, 69, 39, 28, 40, 13, 19, 70, 31, 43, 180, 220, 61, 36, 66, 91, 127, 7, 12, 5, 102, 186, 11, 6, 25, 18, 55, 41, 42, 48, 65, 72, 59, 38, 125, 24, 29, 35, 54, 32, 47, 77, 164, 26, 407, 15, 116, 63, 75, 404, 416, 8, 215, 45, 56, 183, 23, 134, 206, 17, 44, 50
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

That is, there are 12 primes, counted with multiplicity, among the 21 pairwise sums of any 7 consecutive terms.
This is the theoretical maximum: there can't be more than 12 primes in pairwise sums of 7 distinct numbers > 1. See the wiki page for more details.
Conjectured to be a permutation of the positive integers. See A329572 for the nonnegative variant (same definition but with n >= 0 and terms >= 0), leading to a quite different sequence.
For a(5) and a(6) one must forbid values up to 8 in order to be able to find a solution for a(7), but from then on, the greedy choice gives the correct solution, at least for several hundred terms. Small values appearing late are a(30) = 5, a(34) = 6, a(28) = 7, a(62) = 8.

Examples

			Up to and including the 6th term, there is no constraint other than not using a term more than once, since it is impossible to have more than 12 primes as pairwise sums of 6 numbers. So one would first try to use the lexicographically smallest possible choice a(1..6) =?= (1, 2, ..., 6). But then one would have only 7 pairs (i,j) such that a(i) + a(j) is prime, 1 <= i < j <= 6. So one would need 12 - 7 = 5 more primes in {1, 2, ..., 6} + a(7), which is impossible. One can check that even a(1..5) =?= (1,...,5) does not allow one to find a(6) and a(7) in order to have 12 prime sums a(i) + a(j), 1 <= i < j <= 7. Nor is it possible to find a solution with a(5) equal to 6 or 7 or 8. One finds that a(5) = 9, and a(6) = 10, are the smallest possible choices for which a(7) can be found as to satisfy the requirement. In that case, a(7) = 27 is the smallest possible solution, which yields the 12 prime sums 1+2, 2+3, 1+4, 3+4, 2+9, 4+9, 1+10, 3+10, 9+10, 2+27, 4+27, 10+27.
Now, to satisfy the definition of the sequence for n = 2, we drop the initial 1 from the set of consecutive terms, and search for a(8) producing the same number of additional primes together with {2, 3, 4, 9, 10, 27} as did a(1) = 1, namely 3. We see that a(8) = 14 is the smallest possibility. And so on.
It seems that once a(5) and a(6) are chosen, one may always take the smallest possible choice for the next term without ever again running into difficulty. This is in strong contrast to the (exceptional) case of the variant where we require 10 prime sums among 7 consecutive terms, cf. sequence A329574.
		

Crossrefs

Cf. A055272 (analog starting with a(0)=0), A055265 & A128280 (1 prime using 2 terms), A055266 & A253074 (0 primes using 2 terms), A329405 - A329416, A329425, A329333, A329449 - A329456, A329563 - A329581.

Programs

  • PARI
    {A329573(n,show=0,o=1,N=12,M=6,D=[5,9,6,10],p=[],u=o,U)=for(n=o+1,n, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); D&& D[1]==n&& [o=D[2],D=D[3..-1]]&& next; my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo,bittest(U,k-u)|| min(c-#[0|p<-p,isprime(p+k)],#p>=M)|| [o=k,break]));show&&print([u]);o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. See the wiki page for more.

A329564 For all n >= 0, exactly five sums are prime among a(n+i) + a(n+j), 0 <= i < j < 5; lexicographically earliest such sequence of distinct nonnegative numbers.

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 8, 11, 7, 12, 29, 18, 19, 4, 13, 9, 22, 10, 21, 14, 57, 16, 15, 17, 26, 27, 20, 23, 33, 34, 38, 45, 25, 28, 51, 46, 31, 43, 58, 30, 24, 37, 49, 35, 36, 102, 47, 42, 55, 32, 41, 48, 65, 39, 62, 44, 40, 63, 69, 50, 68, 59, 80, 71, 54, 77, 60, 53, 56, 74, 75
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

That is, there are 5 primes, counted with multiplicity, among the 10 pairwise sums of any 5 consecutive terms.
Conjectured to be a permutation of the nonnegative integers.
If so, then the restriction to [1..oo) is a permutation of the positive integers, but not the smallest such, which is given in A329563. It seems that the two sequences have no common terms beyond a(6) = 8, except for the accidental a(22) = 15 and maybe some later coincidences of this type. There also appears to be no other simple relation between the terms of these sequences, in contrast to, e.g., A055265 vs. A128280. - M. F. Hasler, Feb 12 2020

Examples

			For n = 0, we consider pairwise sums among the first 5 terms a(0..4), among which we must have 5 primes. To get a(4), consider first a(0..3) = (0, 1, 2, 3) and the pairwise sums (a(i) + a(j), 0 <= i < j <= 3) = (1; 2, 3; 3, 4, 5) among which there are 4 primes, counted with multiplicity (i.e., the prime 3 is there two times). So the additional term a(4) must give exactly one more prime sum with all of a(0..3). We find that 4 or 5 would give two more primes, but a(4) = 6 gives exactly one more, 1 + 6 = 7.
Now, for n = 1 we forget the initial 0 and consider the pairwise sums of the remaining terms {1, 2, 3, 6}. There are 3 prime sums, so the next term must give two more. The term 4 would give two more (1+4 and 3+4) primes, but thereafter we would have {2, 3, 6, 4} with only 2 prime sums and impossibility to add one term to get three more prime sums: 2+x, 6+x and 4+x can't be all prime for x > 1.
Therefore 4 isn't the next term, and we try a(5) = 5 which indeed gives the required number of primes, and also allows us to continue.
		

Crossrefs

Cf. A329425 (6 primes using 5 consecutive terms).
Cf. A055266 & A253074 (0 primes using 2 terms), A329405 & A329450 (0 primes using 3 terms), A055265 & A128280 (1 prime using 2 terms), A329333, A329406 - A329410 (1 prime using 3, ..., 10 terms), A329411 - A329416 and A329452, A329453 (2 primes using 3, ..., 10 terms), A329454 & A329455 (3 primes using 4 resp. 5 terms), A329449 & A329456 (4 primes using 4 resp. 5 terms), A329568 & A329569 (9 primes using 6 terms), A329572 & A329573 (12 primes using 7 terms), A329563 - A329581: other variants.

Programs

  • PARI
    {A329564(n,show=1,o=0,N=5,M=4,X=[[4,4]],p=[],u,U)=for(n=o,n-1, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); if(#p
    				
Showing 1-2 of 2 results.