A329573 For all n >= 1, exactly 12 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct positive numbers.
1, 2, 3, 4, 9, 10, 27, 14, 20, 33, 34, 69, 39, 28, 40, 13, 19, 70, 31, 43, 180, 220, 61, 36, 66, 91, 127, 7, 12, 5, 102, 186, 11, 6, 25, 18, 55, 41, 42, 48, 65, 72, 59, 38, 125, 24, 29, 35, 54, 32, 47, 77, 164, 26, 407, 15, 116, 63, 75, 404, 416, 8, 215, 45, 56, 183, 23, 134, 206, 17, 44, 50
Offset: 1
Keywords
Examples
Up to and including the 6th term, there is no constraint other than not using a term more than once, since it is impossible to have more than 12 primes as pairwise sums of 6 numbers. So one would first try to use the lexicographically smallest possible choice a(1..6) =?= (1, 2, ..., 6). But then one would have only 7 pairs (i,j) such that a(i) + a(j) is prime, 1 <= i < j <= 6. So one would need 12 - 7 = 5 more primes in {1, 2, ..., 6} + a(7), which is impossible. One can check that even a(1..5) =?= (1,...,5) does not allow one to find a(6) and a(7) in order to have 12 prime sums a(i) + a(j), 1 <= i < j <= 7. Nor is it possible to find a solution with a(5) equal to 6 or 7 or 8. One finds that a(5) = 9, and a(6) = 10, are the smallest possible choices for which a(7) can be found as to satisfy the requirement. In that case, a(7) = 27 is the smallest possible solution, which yields the 12 prime sums 1+2, 2+3, 1+4, 3+4, 2+9, 4+9, 1+10, 3+10, 9+10, 2+27, 4+27, 10+27. Now, to satisfy the definition of the sequence for n = 2, we drop the initial 1 from the set of consecutive terms, and search for a(8) producing the same number of additional primes together with {2, 3, 4, 9, 10, 27} as did a(1) = 1, namely 3. We see that a(8) = 14 is the smallest possibility. And so on. It seems that once a(5) and a(6) are chosen, one may always take the smallest possible choice for the next term without ever again running into difficulty. This is in strong contrast to the (exceptional) case of the variant where we require 10 prime sums among 7 consecutive terms, cf. sequence A329574.
Links
- M. F. Hasler, Prime sums from neighboring terms, OEIS wiki, Nov. 23, 2019
Crossrefs
Programs
-
PARI
{A329573(n,show=0,o=1,N=12,M=6,D=[5,9,6,10],p=[],u=o,U)=for(n=o+1,n, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); D&& D[1]==n&& [o=D[2],D=D[3..-1]]&& next; my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo,bittest(U,k-u)|| min(c-#[0|p<-p,isprime(p+k)],#p>=M)|| [o=k,break]));show&&print([u]);o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. See the wiki page for more.
Comments