A329574 For every n >= 0, exactly 10 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct nonnegative numbers.
0, 1, 2, 3, 4, 5, 8, 9, 10, 14, 33, 15, 20, 27, 26, 11, 32, 16, 41, 21, 57, 116, 22, 51, 38, 23, 50, 63, 86, 6, 17, 24, 77, 65, 18, 13, 114, 25, 36, 28, 35, 43, 12, 31, 61, 66, 40, 19, 47, 42, 90, 241, 7, 52, 37, 34, 45, 30, 55, 49, 394, 58, 73, 39, 48, 64, 109, 115
Offset: 0
Keywords
Examples
At the beginning of the sequence, we must avoid the choice of 6 or 7 for a(6): both appear to be possible at first sight, giving exactly 10 prime sums with n = 0 in the definition, but then make it impossible to find a successor term a(7) for which the definition is satisfied with n = 1. The same happens again for a(37) and a(58), where the apparently possible value 19 resp. 46 must be avoided.
Links
- M. F. Hasler, Prime sums from neighboring terms, OEIS Wiki, Nov. 23, 2019, updated Feb. 2020.
Crossrefs
Programs
-
PARI
{A329574(n, show=0, o=0, N=10, M=6, X=[[6,6],[6,7],[37,19],[58,46]], p=[], u=o, U)=for(n=o+1, n, show>0&& print1(o", "); show<0&& listput(L, o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); for(k=u, oo, bittest(U, k-u)|| min(c-#[0|x<-p, isprime(x+k)], #p>=M)|| setsearch(X, [n, k])|| [o=k, break])); show&&print([u]); o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. Parameters N, M, o, ... allow getting other variants, see the wiki page for more.
Comments