This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329575 #37 Apr 22 2025 05:08:46 %S A329575 3,12,15,21,27,33,39,48,51,57,60,69,75,84,87,93,105,108,111,123,129, %T A329575 132,135,141,147,156,159,165,177,183,189,192,195,201,204,213,219,228, %U A329575 231,237,240,243,249,255,267,273,276,285,291,297,300,303,309,321,327,336,339,345 %N A329575 Numbers whose smallest Fermi-Dirac factor is 3. %C A329575 Every positive integer is the product of a unique subset of the terms of A050376 (sometimes called Fermi-Dirac primes). This sequence lists the numbers where the relevant subset includes 3 but not 2. %C A329575 Numbers whose squarefree part is divisible by 3 but not 2. %C A329575 Positive multiples of 3 that survive sieving by the rule: if m appears then 2m, 3m and 6m do not. Asymptotic density is 1/6. %H A329575 Amiram Eldar, <a href="/A329575/b329575.txt">Table of n, a(n) for n = 1..10000</a> %H A329575 Jan Snellman, <a href="https://arxiv.org/abs/2504.02795">Greedy Regular Convolutions</a>, arXiv:2504.02795 [math.NT], 2025. %F A329575 A223490(a(n)) = 3. %F A329575 A007913(a(n)) == 3 (mod 6). %F A329575 A059897(2, a(n)) = 2 * a(n). %F A329575 A059897(3, a(n)) * 3 = a(n). %F A329575 {a(n) : n >= 1} = {k : 3 * A307150(k) = 2 * k}. %F A329575 A003159 = {a(n) / 3 : n >= 1} U {a(n) : n >= 1}. %F A329575 A036668 = {a(n) / 3 : n >= 1} U {a(n) * 2 : n >= 1}. %F A329575 A145204 \ {0} = {a(n) : n >= 1} U {a(n) * 2 : n >= 1}. %F A329575 a(n) = 3*A339690(n). - _Chai Wah Wu_, Apr 10 2025 %e A329575 6 is the product of the following terms of A050376: 2, 3. These terms include 2, so 6 is not in the sequence. %e A329575 12 is the product of the following terms of A050376: 3, 4. These terms include 3, but not 2, so 12 is in the sequence. %e A329575 20 is the product of the following terms of A050376: 4, 5. These terms do not include 3, so 20 is not in the sequence. %t A329575 f[p_, e_] := p^(2^IntegerExponent[e, 2]); fdmin[n_] := Min @@ f @@@ FactorInteger[n]; Select[Range[350], fdmin[#] == 3 &] (* _Amiram Eldar_, Nov 27 2020 *) %o A329575 (PARI) isok(m) = core(m) % 6 == 3; \\ _Michel Marcus_, May 01 2020 %o A329575 (Python) %o A329575 from itertools import count %o A329575 from sympy import integer_log %o A329575 def A329575(n): %o A329575 def bisection(f,kmin=0,kmax=1): %o A329575 while f(kmax) > kmax: kmax <<= 1 %o A329575 kmin = kmax >> 1 %o A329575 while kmax-kmin > 1: %o A329575 kmid = kmax+kmin>>1 %o A329575 if f(kmid) <= kmid: %o A329575 kmax = kmid %o A329575 else: %o A329575 kmin = kmid %o A329575 return kmax %o A329575 def f(x): %o A329575 c = n+x %o A329575 for i in range(integer_log(x,9)[0]+1): %o A329575 i2 = 9**i %o A329575 for j in count(0,2): %o A329575 k = i2<<j %o A329575 if k>x: %o A329575 break %o A329575 m = x//k %o A329575 c -= (m-1)//6+(m-5)//6+2 %o A329575 return c %o A329575 return 3*bisection(f,n,n) # _Chai Wah Wu_, Apr 10 2025 %Y A329575 Cf. A007913, A036668, A050376, A059897, A223490, A307150, A339690. %Y A329575 Intersection of any 2 of A003159, A145204 and A325424; also subsequence of A028983. %Y A329575 Ordered 3rd quadrisection of A052330. %K A329575 nonn %O A329575 1,1 %A A329575 _Peter Munn_, Apr 27 2020