A329576 For all n >= 1, exactly seven sums are prime among a(n+i) + a(n+j), 0 <= i < j < 6; lexicographically earliest such sequence of distinct positive numbers.
1, 2, 3, 4, 5, 8, 11, 26, 15, 9, 14, 32, 17, 20, 21, 27, 10, 16, 19, 7, 12, 13, 24, 6, 23, 35, 25, 37, 18, 36, 22, 31, 61, 28, 30, 39, 40, 43, 33, 64, 38, 45, 34, 29, 63, 50, 44, 53, 42, 59, 47, 54, 48, 41, 90, 49, 55, 52, 108, 58, 46, 51, 121, 73, 78, 76, 100, 79, 81, 151, 60, 67, 112, 70, 69
Offset: 1
Keywords
Examples
For n = 1, we must forbid the greedy choice for a(6) which would be 6, which leads to a dead end: there is no possibility to find a subsequent term that would give 7 prime sums together with {2, 3, 4, 5, 6}. If we take the next larger possibility, a(6) = 8, then it works for the next and all subsequent terms.
Links
- M. F. Hasler, Prime sums from neighboring terms, OEIS wiki, Nov. 23, 2019
Crossrefs
Programs
-
PARI
{A329576(n,show=1,o=1,N=7,M=5,X=[[6,6]],p=[],u=o,U)=for(n=o+1,n, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); if(#p
Comments