A329581 For every n >= 0, exactly 11 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 8: lexicographically earliest such sequence of distinct nonnegative numbers.
0, 1, 2, 3, 4, 5, 6, 20, 9, 8, 11, 23, 7, 10, 21, 50, 30, 36, 17, 31, 37, 16, 12, 14, 25, 42, 22, 67, 15, 19, 28, 13, 34, 18, 40, 24, 41, 139, 27, 49, 43, 60, 124, 52, 26, 57, 75, 87, 32, 48, 35, 44, 92, 39, 29, 38, 45, 33, 59, 98, 64, 51, 46, 218, 53, 93, 58, 56, 47, 135, 54, 134, 55, 95, 72, 62, 65, 85
Offset: 0
Keywords
Examples
In P(7) := {0, 1, 2, 3, 4, 5, 6} there are already S(7) := 10 primes 0+2, 0+3, 0+5, 1+2, 1+4, 1+6, 2+3, 2+5, 3+4, 5+6 among the pairwise sums, so the next term a(7) must produce exactly one more prime when added to elements of P(7). We find that a(7) = 20 is the smallest possible term (with 20 + 3 = 23). Then in P(8) = {1, 2, 3, 4, 5, 6, 20} there are S(8) = 8 primes among the pairwise sums, so a(8) must produce exactly 3 more primes when added to elements of P(8). We find a(8) = 9 is the smallest possibility (with 2+9, 4+9 and 20+9). And so on.
Links
- M. F. Hasler, Prime sums from neighboring terms, OEIS wiki, Nov. 23, 2019
Crossrefs
Cf. A329580 (10 primes using 8 consecutive terms), A329579 (9 primes using 7 consecutive terms), A329425 (6 primes using 5 consecutive terms).
Cf. A329455 (4 primes using 5 consecutive terms), A329455 (3 primes using 5 consecutive terms), A329453 (2 primes using 5 consecutive terms), A329452 (2 primes using 4 consecutive terms).
Cf. A329577 (7 primes using 7 consecutive terms), A329566 (6 primes using 6 consecutive terms), A329449 (4 primes using 4 consecutive terms).
Cf. A329454 (3 primes using 4 consecutive terms), A329411 (2 primes using 3 consecutive terms), A329333 (1 odd prime using 3 terms), A329450 (0 primes using 3 terms).
Cf. A329405 ff: other variants defined for positive integers.
Programs
-
PARI
A329581(n,show=0,o=0,N=11,M=7,p=[],U,u=o)={for(n=o,n-1, if(show>0,print1(o", "), show<0,listput(L,o)); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j]))));if(#p
Comments