A329587 Irregular triangle read by rows: representative solutions (a, b) of the complex congruence z^2 == +1 (mod m), where z = a + b*i = r*exp(i*phi), with nonvanishing a*b, for all positive integers m which have solutions.
3, 2, 1, 2, 4, 3, 2, 3, 5, 4, 7, 4, 1, 4, 3, 4, 5, 2, 6, 5, 4, 5, 5, 8, 7, 6, 11, 6, 1, 6, 5, 6, 8, 7, 6, 7, 5, 3, 10, 3, 5, 12, 10, 12, 9, 8, 15, 8, 1, 8, 7, 8, 10, 9, 8, 9, 5, 2, 11, 10, 15, 2, 15, 8, 15, 12, 19, 10, 1, 10, 5, 8, 5, 12, 5, 18, 9, 10, 15, 18, 12, 11, 10, 11, 13, 12, 17, 12, 19, 12, 23, 12, 1, 12, 5, 12, 7, 12, 11, 12
Offset: 1
Examples
The irregular triangle T(n, k) begins: (A | symbol separates a > b and a < b pairs, a star indicates that a pair is not relatively prime. For n = 10, 12 and 15 two rows are given with corresponding q >= 7.) n, m \ q 1 2 3 4 5 6 ... ----------------------------------------------------------------------- 1, 4: (3,2) | (1,2) 2, 6: (4,3) | (2,3) 3, 8: (5,4) (7,4) | (1,4) (3,4) 4, 10: (5,2) (6,5) | (4,5) (5,8) 5, 12: (7,6) (11,6) | (1,6) (5,6) 6, 14: (8,7) | (6,7) 7, 15: (5,3) (10,3) | (5,12) (10,12)* 8, 16: (9,8) (15,8) | (1,8) (7,8) 9, 18: (10,9) | (8,9) 10, 20: (5,2) (11,10) (15,2) (15,8) (15,12)* (19,10) | (1,10) (5,8) (5,12) (5,18) (9,10) (15,18)* 11, 22: (12,11) | (10,11) 12, 24: (13,12) (17,12) (19,12) (23,12) | (1,12) (5,12) (7,12) (11,12) 13, 26: (13,18) (14,13) | (12,13) (13,8) 14, 28: (15,14) (27,14) | (1,14) (13,14) 15, 30: (10,3) (16,15) (20,3) (25,12) (25,18) (26,15) (4,15) (5,12) (5,18) (10,27) (14,15) (20,27) 16, 32: (17,16) (31,16) | (1,16) (15,16) 17, 34: (17,4) (18,17) | (16,17) (17,30) 18, 35: (15,7) (20,7) | (15,28) (20,28) ... ---------------------------------------------------------------------------- n=1, m=4: (1 + 2*i)^2 = (1 - 4) + 2*2*i == -3 (mod 4) == 1 (mod 4). (3 + 2*i)^2 = (9 - 4) + 12*i == 1 (mod 4). ---------------------------------------------------------------------------- For even m the Pythagorean triples (X,Y,Z) are: m\ pPT and ipPT*, also with companions with negative X, separated by a | --------------------------------------------------------------------------- 4: (5,12,13) | (-3, 4, 5) 6: (7,24,25) | (-5,12,13) 8: (9,40,41) (33,56,65) | (-15,8,17) (-7,24,25) 10: (21,20,29) (11,60,61) | (-9,40,41) (-39,80,89) 12: (13,84,85) (85,132,157) | (-35,12,37) (-11,60,61) 14: (15,112,113) | (-13,84,85) 16: (17,144,145) (161,240,289) | (-63,16,65) (-15,112,113) 18: (19,180,181) | (-17,144,145) 20: (21, 20, 29) (21,220,221) (221,60,229) (161,240,289) (81, 360,369)* (261,380,461) | (-99,20,101) (-39,80,89) (-119,120,169) (-299,180,349) (-19,180,181) (-99,540,549)* 22: (23,264,265) | (-21,220,221) 24: (25,312,313) (145,408,433) (217,456,505) (385,552,673) (-143,24,145) (-119,120,169) (-95,168,193) (-23,264,265) 26: (105,208,233) (27,364,365) | (-25,312,313) (-155,468,493) 28: (29,420,421) (533,756,925) | (-195,28,197) (-27,364,365) 30: (91,60,109) (31,480,481) (391,120,409) (481,600,769) (301,900,949) (451,780,901) | (-209,120,241) (-119,120,169) (-299,180,349) (-629,540,829) (-29,420,421) (-329,1080,1129) 32: (33,544,545) (705,992,1217) | (-255,32,257) (-31,480,481) 34: (273,136,305) (35,612,613) | (-33,544,545) (-611,1020,1189) ... ----------------------------------------------------------------------------
Formula
Row n, with m = m(n), of this irregular triangle T(n, k), with row length A329588(n), lists all pairs (a, b) which solve z^2 == +1 (mod m), with z = a + b*i, and nonvanishing a*b, sorted with a > b pairs in both halves in the example separated by a | symbol) first with increasing a, then increasing b.
Comments