cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329588 Number of representative solutions (a, b) of the complex congruence z^2 == +1 (mod m) with z = a + b*i and nonvanishing a*b.

Original entry on oeis.org

2, 2, 4, 4, 4, 2, 4, 4, 2, 12, 2, 8, 4, 4, 12, 4, 4, 4, 4, 2, 4, 24, 4, 4, 4, 2, 8, 4, 4, 12, 2, 4, 8, 4, 24, 2, 4, 8, 4, 12, 12, 8, 4, 4, 4, 12, 24, 4, 8, 8, 2, 4, 8, 12, 4, 4, 2, 4, 8, 2, 12, 12, 24, 8, 4, 4, 12, 4, 8, 4, 4, 12, 4, 2, 4, 48
Offset: 1

Views

Author

Wolfdieter Lang, Dec 14 2019

Keywords

Comments

This sequence gives one half of the row lengths of the irregular triangle A329587.
For the number of representative solutions of this congruence for all positive moduli m and vanishing a*b see A329586.
The formula for the number of representative solutions a(n), with modulus m = m(n), given in A329587, can be found from the number of all such solutions for m = m(n) given in A227091 after subtracting the number of solutions with a*b = 0 given in A329586. For odd m = m(n) this is S(m) = 2^(r1(m) +r3(m))*(2^r1(m) - 1) - delta(r3(m), 0)*2^(r1(m)), with r1(m) and r3(m) the number of distinct primes 1 (mod 4) and 3 (mod 4) in the prime number factorization of m respectively, and delta is the Kronecker symbol. For even m this is S(m) = 2^(r1(m) + r3(m))*(2^(1+r1(m)) - 1) - delta(r3(m), 0)*2^(r1(m)) if m/2 is odd (e2 = 1), and otherwise S(m) = 2^(r2(e2(m)) + r1(m) + r3(m))*(2^(1 + r1(m) + r3(m)) - 1), with r2(e2(m)) = 1 or 2 if e2(m) = 2 or >= 3, if m/2^(e2(m)) is odd.

Examples

			n = 1, m = 4: a(1) = S(4) = 2^1 *(2^1 - 1) = 2.
n = 2, m = 6 = 2*3: a(2) = S(6) = 2^(0+1)*(2^1 - 1) - 0 = 2.
n = 3, m = 8 = 2^3: a(3) = S(8) = 2^2*(2^1 - 1) = 4.
n = 4, m = 10 = 2*5: a(4) = S(10) = 2^(1+0)*(2^(1+1) -1) - 2^1 = 2*3 - 2 = 4.
n = 10, m = 20 = 2^2*5: a(10) = S(20) = 2^(1+1+0)*(2^(1+1+0) - 1) = 4*3 = 12.
n = 15, m = 30 = 2*3*5: a(15) = S(30) = 2^(1+1)*(2^(1+1) - 1) - 0 = 4*3 = 12.
		

Crossrefs

Formula

a(n) is the number of solutions (a, b) of the congruence z^2 == +1 (mod m(n)), with z = a + b*i and a*b not equal to 0, for n >= 1. For m = m(n) see A329587: it is the sequence of even numbers >= 4 combined with the odd numbers from A329589, sorted increasingly.