A329588 Number of representative solutions (a, b) of the complex congruence z^2 == +1 (mod m) with z = a + b*i and nonvanishing a*b.
2, 2, 4, 4, 4, 2, 4, 4, 2, 12, 2, 8, 4, 4, 12, 4, 4, 4, 4, 2, 4, 24, 4, 4, 4, 2, 8, 4, 4, 12, 2, 4, 8, 4, 24, 2, 4, 8, 4, 12, 12, 8, 4, 4, 4, 12, 24, 4, 8, 8, 2, 4, 8, 12, 4, 4, 2, 4, 8, 2, 12, 12, 24, 8, 4, 4, 12, 4, 8, 4, 4, 12, 4, 2, 4, 48
Offset: 1
Keywords
Examples
n = 1, m = 4: a(1) = S(4) = 2^1 *(2^1 - 1) = 2. n = 2, m = 6 = 2*3: a(2) = S(6) = 2^(0+1)*(2^1 - 1) - 0 = 2. n = 3, m = 8 = 2^3: a(3) = S(8) = 2^2*(2^1 - 1) = 4. n = 4, m = 10 = 2*5: a(4) = S(10) = 2^(1+0)*(2^(1+1) -1) - 2^1 = 2*3 - 2 = 4. n = 10, m = 20 = 2^2*5: a(10) = S(20) = 2^(1+1+0)*(2^(1+1+0) - 1) = 4*3 = 12. n = 15, m = 30 = 2*3*5: a(15) = S(30) = 2^(1+1)*(2^(1+1) - 1) - 0 = 4*3 = 12.
Comments