A329598 Partial sums of the nontriangular numbers (A014132).
2, 6, 11, 18, 26, 35, 46, 58, 71, 85, 101, 118, 136, 155, 175, 197, 220, 244, 269, 295, 322, 351, 381, 412, 444, 477, 511, 546, 583, 621, 660, 700, 741, 783, 826, 870, 916, 963, 1011, 1060, 1110, 1161, 1213, 1266, 1320, 1376, 1433, 1491, 1550, 1610, 1671, 1733
Offset: 1
Keywords
Examples
The nontriangular numbers begin 2, 4, 5, 7, ..., so their partial sums begin 2, 6, 11, 18, etc.
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.
Programs
-
Mathematica
triQ[n_] := IntegerQ @ Sqrt[8n + 1]; Accumulate@ Select[ Range@ 70, !triQ@# &]
-
Python
from math import isqrt def A329598(n): return (k:=(r:=isqrt(m:=n+1<<1))+int((m<<2)>(r<<2)*(r+1)+1)-1)*(k*(-k - 3) + 6*n - 2)//6 + (n*(n+3)>>1) # Chai Wah Wu, Jun 18 2024
Formula
a(n) = Sum_{i=1..n} A014132(i).
Comments