This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329607 #12 Nov 18 2019 22:03:59 %S A329607 1,2,2,3,2,6,2,5,3,6,2,10,2,6,6,7,2,15,2,10,6,6,2,14,3,6,5,10,2,30,2, %T A329607 11,6,6,6,21,2,6,6,14,2,30,2,10,10,6,2,22,3,15,6,10,2,35,6,14,6,6,2, %U A329607 42,2,6,10,13,6,30,2,10,6,30,2,33,2,6,15,10,6,30,2,22,7,6,2,42,6,6,6,14,2,70,6,10,6,6,6,26,2,15,10,21,2,30,2,14,30 %N A329607 a(n) = A007947(A122111(n)). %H A329607 Antti Karttunen, <a href="/A329607/b329607.txt">Table of n, a(n) for n = 1..65537</a> %H A329607 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A329607 a(n) = A007947(A122111(n)) = A007947(A181819(A108951(n))). %F A329607 a(n) = A122111(A071364(n)). %F A329607 A181821(a(n)) = A329600(n). %t A329607 Block[{f}, f[1] = 1; f[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@ n]; Array[If[# < 1, 0, Sum[EulerPhi[d] Abs@ MoebiusMu[d], {d, Divisors[#]}]] &@ f[#] &, 105]] (* _Michael De Vlieger_, Nov 18 2019, after _JungHwan Min_ at A122111. *) %o A329607 (PARI) %o A329607 A007947(n) = factorback(factorint(n)[, 1]); %o A329607 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A329607 A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n))); %o A329607 A329607(n) = A007947(A122111(n)); %Y A329607 Cf. A007947, A064989, A071364, A077462, A108951, A122111, A181819, A181821, A329600. %K A329607 nonn %O A329607 1,2 %A A329607 _Antti Karttunen_, Nov 17 2019