cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329612 a(n) = gcd(d(n), d(A108951(n))), where d(n) gives the number of divisors of n, A000005(n), and A108951 is fully multiplicative with a(prime(i)) = prime(i)# = prime(1) * ... * prime(i).

This page as a plain text file.
%I A329612 #5 Nov 18 2019 16:42:26
%S A329612 1,2,2,3,2,2,2,4,3,4,2,2,2,4,2,5,2,6,2,2,4,4,2,2,3,4,4,2,2,8,2,6,4,4,
%T A329612 2,3,2,4,4,4,2,8,2,2,2,4,2,2,3,6,4,2,2,4,4,8,4,4,2,6,2,4,2,7,4,8,2,2,
%U A329612 4,8,2,6,2,4,6,2,2,8,2,2,5,4,2,12,4,4,4,8,2,4,4,2,4,4,4,2,2,6,2,9,2,8,2,8,8
%N A329612 a(n) = gcd(d(n), d(A108951(n))), where d(n) gives the number of divisors of n, A000005(n), and A108951 is fully multiplicative with a(prime(i)) = prime(i)# = prime(1) * ... * prime(i).
%H A329612 Antti Karttunen, <a href="/A329612/b329612.txt">Table of n, a(n) for n = 1..65537</a>
%H A329612 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A329612 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A329612 a(n) = gcd(A000005(n),A329605(n)) = gcd(A000005(n),A000005(A108951(n))).
%o A329612 (PARI)
%o A329612 A034386(n) = prod(i=1, primepi(n), prime(i));
%o A329612 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
%o A329612 A329612(n) = gcd(numdiv(n),numdiv(A108951(n)));
%Y A329612 Cf. A000005, A034386, A108951, A329614.
%K A329612 nonn
%O A329612 1,2
%A A329612 _Antti Karttunen_, Nov 18 2019