cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329614 Smallest prime factor of the number of divisors of A108951(n).

This page as a plain text file.
%I A329614 #16 Nov 18 2019 22:04:07
%S A329614 1,2,2,3,2,2,2,2,3,2,2,2,2,2,2,5,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,
%T A329614 2,3,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,2,2,2,2,
%U A329614 2,2,2,2,2,2,2,2,2,2,2,2,5,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2
%N A329614 Smallest prime factor of the number of divisors of A108951(n).
%C A329614 Differs from A071187 for the first time at n=324, where a(324) = 5, while A071187(324) = 3. The positions of the differences are listed at A329613.
%H A329614 Antti Karttunen, <a href="/A329614/b329614.txt">Table of n, a(n) for n = 1..100000</a>
%H A329614 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A329614 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A329614 a(n) = A071187(A108951(n)).
%F A329614 a(n) = A020639(A329605(n)).
%e A329614 324 = 18^2 = 2^2 * 3^4, thus A108951(324) = 2^2 * (2*3)^4 = 2^6 * 3^4 = 5184, which has (6+1)*(4+1) = 7 * 5 = 35 divisors, thus a(324) = A020639(35) = 5.
%t A329614 Array[FactorInteger[DivisorSigma[0, #]][[1, 1]] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] (* _Michael De Vlieger_, Nov 18 2019 *)
%o A329614 (PARI)
%o A329614 A034386(n) = prod(i=1, primepi(n), prime(i));
%o A329614 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
%o A329614 A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1]));
%o A329614 A329614(n) = A071187(A108951(n));
%Y A329614 Cf. A020639, A034386, A071187, A108951, A329605, A329608, A329612, A329613.
%K A329614 nonn
%O A329614 1,2
%A A329614 _Antti Karttunen_, Nov 17 2019