This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329615 #12 Nov 18 2019 16:42:35 %S A329615 0,1,1,2,1,0,1,3,2,0,1,1,1,0,0,4,1,2,1,1,0,0,1,0,2,0,3,1,1,0,1,5,0,0, %T A329615 0,0,1,0,0,0,1,0,1,1,1,0,1,1,2,2,0,1,1,0,0,0,0,0,1,0,1,0,1,6,0,0,1,1, %U A329615 0,0,1,0,1,0,2,1,0,0,1,1,4,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,2,1,0,1,0,1,0,0 %N A329615 Bitwise-AND of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i). %H A329615 Antti Karttunen, <a href="/A329615/b329615.txt">Table of n, a(n) for n = 1..65537</a> %H A329615 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A329615 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A329615 a(n) = A267115(A108951(n)) = A267115(A329600(n)). %F A329615 a(n) <= A329616(n). %o A329615 (PARI) %o A329615 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A329615 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A329615 A267115(n) = if(n>1, fold(bitand, factor(n)[, 2]), 0); \\ From A267115 %o A329615 A329615(n) = A267115(A108951(n)); %Y A329615 Cf. A034386, A108951, A267115, A329600, A329616, A329647. %K A329615 nonn %O A329615 1,4 %A A329615 _Antti Karttunen_, Nov 17 2019