This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329617 #11 Nov 18 2019 16:42:49 %S A329617 1,1,1,2,1,2,1,3,2,2,1,3,1,2,2,4,1,6,1,3,2,2,1,4,2,2,3,3,1,6,1,5,2,2, %T A329617 2,8,1,2,2,4,1,6,1,3,3,2,1,5,2,6,2,3,1,12,2,4,2,2,1,8,1,2,3,6,2,6,1,3, %U A329617 2,6,1,10,1,2,6,3,2,6,1,5,4,2,1,8,2,2,2,4,1,12,2,3,2,2,2,6,1,6,3,8,1,6,1,4,6 %N A329617 Product of distinct exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i). %H A329617 Antti Karttunen, <a href="/A329617/b329617.txt">Table of n, a(n) for n = 1..65537</a> %H A329617 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A329617 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A329617 a(n) = A290107(A108951(n)) = A290107(A329600(n)). %F A329617 A329378(n) <= a(n) <= A329382(n) <= A329605(n). %o A329617 (PARI) %o A329617 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A329617 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A329617 A290107(n) = factorback(vecsort((factor(n)[, 2]), , 8)); %o A329617 A329617(n) = A290107(A108951(n)); %Y A329617 Cf. A034386, A108951, A290107, A329600, A329605. %Y A329617 Differs from related A329378 for the first time at n=36. See also A329382. %K A329617 nonn %O A329617 1,4 %A A329617 _Antti Karttunen_, Nov 17 2019