This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329629 #6 Nov 18 2019 23:15:28 %S A329629 1,3,5,11,13,15,17,29,31,33,39,41,43,47,51,55,59,65,67,73,79,83,85,87, %T A329629 93,101,109,113,123,127,129,137,139,141,143,145,149,155,157,163,165, %U A329629 167,177,179,181,187,191,195,199,201,205,211,215,219,221,233,235,237 %N A329629 Products of distinct odd primes of squarefree index. %C A329629 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of set-systems (sets of nonempty sets). %e A329629 The sequence of terms together with their corresponding set-systems begins: %e A329629 1: {} %e A329629 3: {{1}} %e A329629 5: {{2}} %e A329629 11: {{3}} %e A329629 13: {{1,2}} %e A329629 15: {{1},{2}} %e A329629 17: {{4}} %e A329629 29: {{1,3}} %e A329629 31: {{5}} %e A329629 33: {{1},{3}} %e A329629 39: {{1},{1,2}} %e A329629 41: {{6}} %e A329629 43: {{1,4}} %e A329629 47: {{2,3}} %e A329629 51: {{1},{4}} %e A329629 55: {{2},{3}} %e A329629 59: {{7}} %e A329629 65: {{2},{1,2}} %e A329629 67: {{8}} %e A329629 73: {{2,4}} %t A329629 Select[Range[100],OddQ[#]&&SquareFreeQ[#]&&And@@SquareFreeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&] %Y A329629 Allowing even terms (systems with empty edges) gives A302494. %Y A329629 Cf. A005117, A056239, A112798, A302242, A327398, A328514, A329557, A329630. %Y A329629 Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters). %K A329629 nonn %O A329629 1,2 %A A329629 _Gus Wiseman_, Nov 18 2019