This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329633 #42 Dec 10 2023 17:43:02 %S A329633 1,1,1,1,3,5,2,1,6,16,39,61,47,8,1,10,40,125,400,1048,1905,2372,1839, %T A329633 764,86,1,15,85,335,1237,4638,15860,44365,99815,181995,262414,285086, %U A329633 218011,104879,26344,1770 %N A329633 Triangle read by rows: T(n,k) is the number of self-avoiding paths of length n-1+2*k from NW to SW corners in the n X n grid graph (0 <= k <= A000217(n-1), n >= 1). %H A329633 Seiichi Manyama, <a href="/A329633/b329633.txt">Rows n = 1..9, flattened</a> %F A329633 T(n,0) = 1. %F A329633 T(n,1) = A000217(n-1). %e A329633 T(3,0) = 1; %e A329633 S %e A329633 | %e A329633 * %e A329633 | %e A329633 E %e A329633 T(3,1) = 3; %e A329633 S--* S--* S %e A329633 | | | %e A329633 *--* * *--* %e A329633 | | | %e A329633 E E--* E--* %e A329633 T(3,2) = 5; %e A329633 S--*--* S--*--* S--*--* S--* S %e A329633 | | | | | %e A329633 *--*--* *--* * *--* *--*--* %e A329633 | | | | | %e A329633 E E--* E--*--* E--*--* E--*--* %e A329633 T(3,3) = 2; %e A329633 S--*--* S *--* %e A329633 | | | | %e A329633 *--* * *--* * %e A329633 | | | | %e A329633 E *--* E--*--* %e A329633 Triangle starts: %e A329633 ========================================================== %e A329633 n\k| 0 1 2 3 4 5 6 ... 10 ... 15 %e A329633 ---|------------------------------------------------------ %e A329633 1 | 1; %e A329633 2 | 1, 1; %e A329633 3 | 1, 3, 5, 2; %e A329633 4 | 1, 6, 16, 39, 61, 47, 8; %e A329633 5 | 1, 10, 40, 125, 400, 1048, 1905, ... , 86; %e A329633 6 | 1, 15, 85, 335, 1237, 4638, 15860, ......... , 1770; %o A329633 (Python) %o A329633 # Using graphillion %o A329633 from graphillion import GraphSet %o A329633 import graphillion.tutorial as tl %o A329633 def A329633(n): %o A329633 if n == 1: return [1] %o A329633 universe = tl.grid(n - 1, n - 1) %o A329633 GraphSet.set_universe(universe) %o A329633 start, goal = 1, n %o A329633 paths = GraphSet.paths(start, goal) %o A329633 return [paths.len(n - 1 + 2 * k).len() for k in range(n * (n - 1) // 2 + 1)] %o A329633 print([i for n in range(1, 7) for i in A329633(n)]) %Y A329633 Row sums give A271507. %Y A329633 T(n,(n-1)*n/2) gives A000532(n). %Y A329633 Cf. A000217, A333520. %K A329633 nonn,tabf %O A329633 1,5 %A A329633 _Seiichi Manyama_, Mar 30 2020