This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329637 #21 Dec 11 2019 20:10:51 %S A329637 1,1,1,4,-1,1,0,4,-5,1,24,-16,4,-13,1,-8,40,-48,4,-29,1,104,-88,72, %T A329637 -112,4,-61,1,-48,184,-248,136,-240,4,-125,1,352,-400,344,-568,264, %U A329637 -496,4,-253,1,80,544,-1104,664,-1208,520,-1008,4,-509,1,1424,-784,928,-2512,1304,-2488,1032,-2032,4,-1021,1 %N A329637 Square array A(n, k) = A329644(prime(n)^k), read by falling antidiagonals: (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ... %H A329637 Antti Karttunen, <a href="/A329637/b329637.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array</a> %H A329637 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A329637 A(n, k) = A329644(A182944(n, k)). %F A329637 A(n, k) = A000079(n+k-1) - (A000225(n) * A329890(k)). %e A329637 The top left corner of the array: %e A329637 n p_n |k=1, 2, 3, 4, 5, 6, 7, 8, 9, 10 %e A329637 ---------+---------------------------------------------------------------------- %e A329637 1 -> 2 | 1, 1, 4, 0, 24, -8, 104, -48, 352, 80, %e A329637 2 -> 3 | 1, -1, 4, -16, 40, -88, 184, -400, 544, -784, %e A329637 3 -> 5 | 1, -5, 4, -48, 72, -248, 344, -1104, 928, -2512, %e A329637 4 -> 7 | 1, -13, 4, -112, 136, -568, 664, -2512, 1696, -5968, %e A329637 5 -> 11 | 1, -29, 4, -240, 264, -1208, 1304, -5328, 3232, -12880, %e A329637 6 -> 13 | 1, -61, 4, -496, 520, -2488, 2584, -10960, 6304, -26704, %e A329637 7 -> 17 | 1, -125, 4, -1008, 1032, -5048, 5144, -22224, 12448, -54352, %e A329637 8 -> 19 | 1, -253, 4, -2032, 2056, -10168, 10264, -44752, 24736, -109648, %e A329637 9 -> 23 | 1, -509, 4, -4080, 4104, -20408, 20504, -89808, 49312, -220240, %e A329637 10 -> 29 | 1, -1021, 4, -8176, 8200, -40888, 40984, -179920, 98464, -441424, %e A329637 11 -> 31 | 1, -2045, 4, -16368, 16392, -81848, 81944, -360144, 196768, -883792, %o A329637 (PARI) %o A329637 up_to = 105; %o A329637 A329890(n) = if(1==n,1,sigma((2^n)-1)-sigma((2^(n-1))-1)); %o A329637 A329637sq(n,k) = ((2^(n+k-1)) - (((2^n)-1) * A329890(k))); %o A329637 A329637list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A329637sq(col,(a-(col-1))))); (v); }; %o A329637 v329637 = A329637list(up_to); %o A329637 A329637(n) = v329637[n]; %Y A329637 Cf. A000079, A000203, A000225, A075708, A182944, A329610, A329644, A329890. %Y A329637 Rows 1-2: A329891, A329892 (from n>=1). %Y A329637 Column 1: A000012, Column 2: -A036563(n) (from n>=1), Column 3: A010709. %K A329637 sign,tabl %O A329637 1,4 %A A329637 _Antti Karttunen_, Nov 22 2019