cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329637 Square array A(n, k) = A329644(prime(n)^k), read by falling antidiagonals: (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...

This page as a plain text file.
%I A329637 #21 Dec 11 2019 20:10:51
%S A329637 1,1,1,4,-1,1,0,4,-5,1,24,-16,4,-13,1,-8,40,-48,4,-29,1,104,-88,72,
%T A329637 -112,4,-61,1,-48,184,-248,136,-240,4,-125,1,352,-400,344,-568,264,
%U A329637 -496,4,-253,1,80,544,-1104,664,-1208,520,-1008,4,-509,1,1424,-784,928,-2512,1304,-2488,1032,-2032,4,-1021,1
%N A329637 Square array A(n, k) = A329644(prime(n)^k), read by falling antidiagonals: (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
%H A329637 Antti Karttunen, <a href="/A329637/b329637.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array</a>
%H A329637 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A329637 A(n, k) = A329644(A182944(n, k)).
%F A329637 A(n, k) = A000079(n+k-1) - (A000225(n) * A329890(k)).
%e A329637 The top left corner of the array:
%e A329637    n   p_n |k=1,     2, 3,      4,     5,      6,     7,       8,      9,      10
%e A329637   ---------+----------------------------------------------------------------------
%e A329637    1 ->  2 |  1,     1, 4,      0,    24,     -8,   104,     -48,    352,      80,
%e A329637    2 ->  3 |  1,    -1, 4,    -16,    40,    -88,   184,    -400,    544,    -784,
%e A329637    3 ->  5 |  1,    -5, 4,    -48,    72,   -248,   344,   -1104,    928,   -2512,
%e A329637    4 ->  7 |  1,   -13, 4,   -112,   136,   -568,   664,   -2512,   1696,   -5968,
%e A329637    5 -> 11 |  1,   -29, 4,   -240,   264,  -1208,  1304,   -5328,   3232,  -12880,
%e A329637    6 -> 13 |  1,   -61, 4,   -496,   520,  -2488,  2584,  -10960,   6304,  -26704,
%e A329637    7 -> 17 |  1,  -125, 4,  -1008,  1032,  -5048,  5144,  -22224,  12448,  -54352,
%e A329637    8 -> 19 |  1,  -253, 4,  -2032,  2056, -10168, 10264,  -44752,  24736, -109648,
%e A329637    9 -> 23 |  1,  -509, 4,  -4080,  4104, -20408, 20504,  -89808,  49312, -220240,
%e A329637   10 -> 29 |  1, -1021, 4,  -8176,  8200, -40888, 40984, -179920,  98464, -441424,
%e A329637   11 -> 31 |  1, -2045, 4, -16368, 16392, -81848, 81944, -360144, 196768, -883792,
%o A329637 (PARI)
%o A329637 up_to = 105;
%o A329637 A329890(n) = if(1==n,1,sigma((2^n)-1)-sigma((2^(n-1))-1));
%o A329637 A329637sq(n,k) = ((2^(n+k-1)) - (((2^n)-1) * A329890(k)));
%o A329637 A329637list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A329637sq(col,(a-(col-1))))); (v); };
%o A329637 v329637 = A329637list(up_to);
%o A329637 A329637(n) = v329637[n];
%Y A329637 Cf. A000079, A000203, A000225, A075708, A182944, A329610, A329644, A329890.
%Y A329637 Rows 1-2: A329891, A329892 (from n>=1).
%Y A329637 Column 1: A000012, Column 2: -A036563(n) (from n>=1), Column 3: A010709.
%K A329637 sign,tabl
%O A329637 1,4
%A A329637 _Antti Karttunen_, Nov 22 2019