A329306 Define b(D) = -Sum_{i=1..D} Kronecker(-D,i)*i for D == 0 or 3 (mod 4); sequence gives D such that b(D) = 0.
28, 60, 72, 92, 99, 100, 112, 124, 147, 156, 180, 188, 207, 220, 240, 252, 275, 284, 288, 315, 316, 348, 368, 380, 396, 400, 412, 423, 444, 448, 475, 476, 496, 504, 507, 508, 531, 540, 572, 588, 600, 604, 612, 624, 636, 639, 648, 668, 676, 700, 720, 732, 747, 752, 764
Offset: 1
Keywords
Examples
60 is a term because 60 = 2^2 * 15 and 15 == 7 (mod 8), so we have -Sum_{i=1..60} Kronecker(-60,i)*i = 0. 99 is a term because 99 = 3^2 * 11 and Kronecker(-11,3) = 1, so we have -Sum_{i=1..99} Kronecker(-99,i)*i = 0.
Programs
-
PARI
isA329306(n) = if(n%4==0||n%4==3, my(f=factor(n)); for(i=1, omega(n), my(p=f[i,1],e=f[i,2],m=n/p^e); if(!(e%2) && if(p==2, m%8==7, kronecker(-m,p)==1), return(1)))); 0
Comments