A329649 Let D = A042948(n) be the n-th positive integer congruent to 0 or 1 mod 4, then a(n) = b(D) := Sum_{i=1..D} Kronecker(D,i)*i^2, where Kronecker(D,i) is the Kronecker symbol.
1, 10, 4, 16, 159, 48, 52, 680, 136, 48, 168, 288, 4150, 448, 348, 64, 792, 5196, 740, 1120, 1312, 1232, 144, 192, 33565, 624, 1484, 2240, 3192, 2880, 2684, 43680, 4160, -544, 3312, 576, 6424, 5776, 3696, 192, 118071, 2016, 6120, 8096, 9256, 7360, 6696, 1152, 13192
Offset: 1
Keywords
Examples
For n = 3, D = 5, b(5) = 1^2 - 2^2 - 3^2 + 4^2 = 4. Here 5 = 5*1^2, we have b(5)/(4*1^2) = 1 is an integer. Also, Sum_{k>=1} Kronecker(5,k)/k^2 = Pi^2/(25*sqrt(5)) = Pi^2*b(5)/5^(5/2). For n = 4, D = 8, b(8) = 1^2 - 3^2 - 5^2 + 7^2 = 16. We have Sum_{k>=1} Kronecker(8,k)/k^2 = Pi^2/(8*sqrt(2)) = Pi^2*b(8)/8^(5/2). For n = 6, D = 12, b(12) = 1^2 - 5^2 - 7^2 + 11^2 = 48. Here 12 is not of the form k^2 or 5*k^2 or 2^t (t odd, t > 1), we have b(12)/(4*12) = 1 is an integer. Also, Sum_{k>=1} Kronecker(12,k)/k^2 = Pi^2/(6*sqrt(3)) = Pi^2*b(12)/12^(5/2).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
b[n_] = Sum[KroneckerSymbol[n, i]*i^2, {i, 1, n}]; a[n_] = b[2 n - Mod[n, 2]]
-
PARI
b(n) = sum(i=1, n, kronecker(n,i)*i^2) a(n) = b(2*n - (n%2))
Formula
If D is a square, then b(D) = A053818(D), so b(D) is divisible by D if and only if sqrt(D) is not in A316860.
If D is not a square, D is divisible by p^e, where e >= 4 if p = 2, e >= 3 if p > 2, then it is easy to see that b(D) = p^2*b(D/p^2). So we only need to consider the value of b(D) where D is a cubefree number or 8 times a cubefree odd number. Specially, for odd t, we have b(2^t) = b(8)*(2^(t-3)) = 2^(t+1) for t > 1; b(5^t) = b(5)*(5^(t-1)) = 4*5^(t-1); b(13^t) = b(13)*(13^(t-1)) = 4*13^t and so on.
Comments