A329655 Square array read by antidiagonals: T(n,k) is the number of relations between set A with n elements and set B with k elements that are both right unique and left unique.
1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 33, 20, 5, 6, 30, 72, 72, 30, 6, 7, 42, 135, 208, 135, 42, 7, 8, 56, 228, 500, 500, 228, 56, 8, 9, 72, 357, 1044, 1545, 1044, 357, 72, 9, 10, 90, 528, 1960, 4050, 4050, 1960, 528, 90, 10, 11, 110, 747, 3392, 9275, 13326, 9275, 3392, 747, 110, 11
Offset: 1
Examples
The symmetric array T(n,k) begins: 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 2, 6, 12, 20, 30, 42, 56, 72, 90, ... 3, 12, 33, 72, 135, 228, 357, 528, 747, ... 4, 20, 72, 208, 500, 1044, 1960, 3392, 5508, ... 5, 30, 135, 500, 1545, 4050, 9275, 19080, 36045, ... 6, 42, 228, 1044, 4050, 13326, 37632, 93288, 207774, ... 7, 56, 357, 1960, 9275, 37632, 130921, 394352, 1047375, ... 8, 72, 528, 3392, 19080, 93288, 394352, 1441728, 4596552, ... 9, 90, 747, 5508, 36045, 207774, 1047375, 4596552, 17572113, ...
Links
- Roy S. Freedman, Some New Results on Binary Relations, arXiv:1501.01914 [cs.DM], 2015.
Programs
-
Maple
T:= (n,k)-> value(Sum(binomial(n,j)*binomial(k, j)*j!, j=1..k)): seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
T[n_, k_] := Sum[Binomial[n, j] * Binomial[k, j] * j!, {j, 1, k}]; Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
-
MuPAD
T:=(n,k)->_plus (binomial(n,j)*binomial(k, j)* j! $ j=1..k):
Formula
T(n,k) = Sum_{j=1..k} binomial(n,j)*binomial(k,j)*j!.
T(n,k) = A088699(n,k)-1.
Comments