A329660 Numbers m such that sigma(m) is a Lucas number (A000032), where sigma(m) is the sum of divisors of m (A000203).
1, 2, 3, 4, 10, 17, 688, 1075, 103681, 7860997, 10749957121, 115561578124838522881, 488296733939737583689, 489501979450313254561, 3628116960730713370000, 8784132317383836036997, 8784200214538920269317, 50755107290462736080376601, 94426187701102977738552612783157
Offset: 1
Keywords
Examples
4 is in the sequence since sigma(4) = 7 is a Lucas number.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..225
Programs
-
Mathematica
f = LucasL @ Range[1, 40]; Select[Range[10^6], MemberQ[f, DivisorSigma[1, #]] &] (* after Giovanni Resta at A272412 *)
Extensions
a(12)-a(19) from Giovanni Resta, Nov 18 2019
Comments