A329671 Number of excursions of length n with Motzkin-steps avoiding the consecutive steps UU, HH and DD.
1, 1, 1, 3, 4, 6, 12, 20, 33, 61, 109, 191, 349, 639, 1159, 2133, 3953, 7311, 13595, 25417, 47570, 89272, 168126, 317226, 599699, 1136403, 2157363, 4102113, 7813560, 14906230, 28476388, 54475340, 104347011, 200113007, 384207955, 738468129, 1420824404, 2736345674, 5274795212
Offset: 0
Examples
a(4)=4 since we have 4 excursions of length 4, namely UHDH, UDUD, HUHD and HUDH.
Crossrefs
Cf. A329665, which counts meanders avoiding consecutive UU, HH and DD steps.
Formula
G.f.: (1+t)*(1-t^2-2*t^3-(1+t)*sqrt(1-2*t+t^2-4*t^3+4*t^4))/(2*t^4).
D-finite with recurrence: (n+4)*a(n) +(-n-4)*a(n-1) +(-n+2)*a(n-2) -3*n*a(n-3) +6*a(n-4) +4*(n-5)*a(n-5)=0. - R. J. Mathar, Jan 09 2020
Comments