A329683 Number of excursions of length n with Motzkin-steps forbidding all consecutive steps of length 2 except UH, HH and HD.
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Examples
For n >= 3 we always have two allowed excursions, namely UH^(n-2)D and H^n. For n = 0, 1, 2 we have one meander each, namely the empty walk, H and HH.
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Formula
G.f.: (1 + t^3)/(1 - t).
a(n) = 2 for n >= 3. - Elmo R. Oliveira, Jun 16 2024
Comments