cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329712 The number of rooted chains in the lattice of (0, 1) matrices of order n.

This page as a plain text file.
%I A329712 #17 Mar 15 2020 09:45:32
%S A329712 1,2,150,14174522,10631309363962710,213394730876951551651166996282,
%T A329712 288398561903310939256721956218813835167026180310,
%U A329712 55313586130829865212025793302979452922870356482030868613037427298852922
%N A329712 The number of rooted chains in the lattice of (0, 1) matrices of order n.
%C A329712 Also, the number of n X n distinct rooted fuzzy matrices.
%C A329712 The number of chains in the power set of n^2-elements such that the first term of the chains is either an empty set or a set of n^2-elements.
%C A329712 The number of chains in the collection of all binary (crisp or Boolean or logical) matrices of order n such that the first term of the chains is either null matrix or unit matrix.
%H A329712 S. R. Kannan and Rajesh Kumar Mohapatra, <a href="https://arxiv.org/abs/1909.13678">Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques</a>, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
%H A329712 V. Murali and B. Makamba, <a href="https://doi.org/10.1080/03081070512331318356">Finite Fuzzy Sets</a>, Int. J. Gen. Syst., Vol. 34 (1) (2005), pp. 61-75.
%H A329712 R. B. Nelsen and H. Schmidt, Jr., <a href="http://www.jstor.org/stable/2690450">Chains in power sets</a>, Math. Mag., 64 (1) (1991), 23-31.
%H A329712 M. Tărnăuceanu, <a href="http://www.jstor.org/stable/2690450">The number of chains of subgroups of a finite elementary abelian p-group</a>, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
%F A329712 a(n) = A000629(n^2).
%Y A329712 Cf. A000629, A038719, A007047, A328044, A330301, A330302, A330804, A331957.
%K A329712 nonn
%O A329712 0,2
%A A329712 S. R. Kannan, _Rajesh Kumar Mohapatra_, Feb 29 2020