cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329713 The number of regions inside a heptagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.

This page as a plain text file.
%I A329713 #29 May 13 2020 11:56:02
%S A329713 50,868,5594,18396,48462,101794,195714,336504,549704,841890,1249676,
%T A329713 1774612,2468572,3328234,4414054,5725034,7336855,9233098,11513419,
%U A329713 14149296,17254434,20805554,24928380,29573348,34902155,40861422,47613161
%N A329713 The number of regions inside a heptagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
%C A329713 The terms are from numeric computation - no formula for a(n) is currently known.
%H A329713 Scott R. Shannon, <a href="/A329713/a329713.png">Heptagon regions for n = 1</a>.
%H A329713 Scott R. Shannon, <a href="/A329713/a329713_1.png">Heptagon regions for n = 2</a>.
%H A329713 Scott R. Shannon, <a href="/A329713/a329713_2.png">Heptagon regions for n = 3</a>.
%H A329713 Scott R. Shannon, <a href="/A329713/a329713_3.png">Heptagon regions for n = 4</a>.
%H A329713 Scott R. Shannon, <a href="/A329713/a329713_6.png">Heptagon regions with random distance-based coloring for n = 1</a>.
%H A329713 Scott R. Shannon, <a href="/A329713/a329713_4.png">Heptagon regions with random distance-based coloring for n = 2</a>.
%H A329713 Scott R. Shannon, <a href="/A329713/a329713_5.png">Heptagon regions with random distance-based coloring for n = 3</a>.
%H A329713 Wikipedia, <a href="https://en.wikipedia.org/wiki/Heptagon">Heptagon</a>.
%Y A329713 Cf. A329714 (n-gons), A333112 (edges), A333113 (vertices), A007678, A092867, A331452, A331931.
%K A329713 nonn,more
%O A329713 1,1
%A A329713 _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 07 2020
%E A329713 a(8)-a(27) from _Lars Blomberg_, May 13 2020