A329715 Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^3.
9, 5, 8, 3, 8, 0, 4, 5, 4, 5, 6, 3, 0, 9, 4, 5, 6, 2, 0, 5, 1, 6, 6, 9, 4, 0, 2, 8, 6, 1, 5, 7, 7, 8, 1, 8, 8, 2, 4, 8, 9, 5, 3, 1, 7, 9, 3, 9, 7, 7, 5, 3, 4, 0, 7, 5, 7, 5, 0, 4, 5, 0, 7, 0, 4, 7, 0, 7, 5, 6, 9, 7, 4, 8, 4, 2, 9, 7, 9, 3, 6, 4, 7, 8, 2, 5, 2, 6, 9, 9, 7
Offset: 0
Examples
1 - 1/3^3 - 1/5^3 + 1/7^3 + 1/9^3 - 1/11^3 - 1/13^3 + 1/15^3 + ... = 0.9583804545...
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 99.
- R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, Section 2.2 at m=8, r=2, s=3.
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Crossrefs
Programs
-
Mathematica
(PolyGamma[2, 1/8] - PolyGamma[2, 3/8] - PolyGamma[2, 5/8] + PolyGamma[2, 7/8])/(-1024) // RealDigits[#, 10, 102] & // First
Formula
Equals (zeta(3,1/8) - zeta(3,3/8) - zeta(3,5/8) + zeta(3,7/8))/512, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(3,u) - polylog(3,u^3) - polylog(3,-u) + polylog(3,-u^3))/sqrt(8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/8) - polygamma(2,3/8) - polygamma(2,5/8) + polygamma(2,7/8))/(-1024).
Equals 1/(Product_{p prime == 1 or 7 (mod 8)} (1 - 1/p^3) * Product_{p prime == 3 or 5 (mod 8)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023
Comments