A329716 Decimal expansion of Sum_{k>=1} Kronecker(12,k)/k^3.
9, 9, 0, 0, 4, 0, 0, 1, 9, 4, 3, 8, 1, 5, 9, 9, 4, 9, 7, 9, 1, 8, 1, 6, 7, 7, 6, 8, 6, 3, 3, 0, 4, 0, 5, 0, 8, 5, 6, 8, 8, 5, 0, 6, 7, 6, 5, 7, 2, 3, 6, 1, 4, 5, 5, 5, 3, 6, 6, 0, 7, 0, 0, 3, 4, 2, 3, 5, 2, 0, 5, 3, 3, 6, 7, 1, 8, 1, 1, 6, 7, 7, 8, 5, 6, 0, 2, 2, 3, 1, 8
Offset: 0
Examples
1 - 1/5^3 - 1/7^3 + 1/11^3 + 1/13^3 - 1/17^3 - 1/19^3 + 1/23^3 + ... = 0.9900400194...
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 99.
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Crossrefs
Programs
-
Mathematica
(PolyGamma[2, 1/12] - PolyGamma[2, 5/12] - PolyGamma[2, 7/12] + PolyGamma[2, 11/12])/(-3456) // RealDigits[#, 10, 102] & // First
Formula
Equals (zeta(3,1/12) - zeta(3,5/12) - zeta(3,7/12) + zeta(3,11/12))/1728, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(3,u) - polylog(3,u^5) - polylog(3,-u) + polylog(3,-u^5))/sqrt(12), where u = (sqrt(3)+i)/2 is a 12th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/12) - polygamma(2,5/12) - polygamma(2,7/12) + polygamma(2,11/12))/(-3456).
Equals 1/(Product_{p prime == 1 or 11 (mod 12)} (1 - 1/p^3) * Product_{p prime == 5 or 7 (mod 12)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023
Comments