cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329718 The number of open tours by a biased rook on a specific f(n) X 1 board, where f(n) = A070941(n) and cells are colored white or black according to the binary representation of 2n.

Original entry on oeis.org

1, 2, 4, 4, 8, 6, 14, 8, 16, 10, 24, 10, 46, 24, 46, 16, 32, 18, 44, 14, 84, 34, 68, 18, 146, 68, 138, 44, 230, 84, 146, 32, 64, 34, 84, 22, 160, 54, 112, 22, 276, 106, 224, 54, 376, 106, 192, 34, 454, 192, 406, 112, 690, 224, 406, 84, 1066, 376, 690, 160
Offset: 0

Views

Author

Mikhail Kurkov, Nov 19 2019 [verification needed]

Keywords

Comments

A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right.

Examples

			a(1) = 2 because the binary expansion of 2 is 10 and there are 2 open biased rook's tours, namely 12 and 21.
a(2) = 4 because the binary expansion of 4 is 100 and there are 4 open biased rook's tours, namely 132, 213, 231 and 321.
a(3) = 4 because the binary expansion of 6 is 110 and there are 4 open biased rook's tours, namely 123, 132, 231 and 312.
		

Crossrefs

Formula

a(n) = f(n) + f(A059894(n)) = f(n) + f(2*A053645(n)) for n > 0 with a(0) = 1 where f(n) = A329369(n).
Sum_{k=0..2^n-1} a(k) = 2*(n+1)! - 1 for n >= 0.
a((4^n-1)/3) = 2*A110501(n+1) for n > 0.
a(2^1*(2^n-1)) = A027649(n),
a(2^2*(2^n-1)) = A027650(n),
a(2^3*(2^n-1)) = A027651(n),
a(2^4*(2^n-1)) = A283811(n),
and more generally, a(2^m*(2^n-1)) = T(n,m+1) for n >= 0, m >= 0 where T(n,m) = Sum_{k=0..n} k!*(k+1)^m*Stirling2(n,k)*(-1)^(n-k).