This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329721 #33 Dec 05 2019 19:10:02 %S A329721 2,3,1,4,4,6,9,1,8,20,4,14,35,15,20,70,36,2,36,122,90,8,60,226,196,30, %T A329721 108,410,414,91,1,188,762,848,242,8,352,1390,1719,601,34,632,2616, %U A329721 3406,1416,122,1182,4879,6739,3207,374,3,2192,9196,13274,7026,1062,18 %N A329721 Irregular triangular array T(n,k) read by rows: T(n,k) is the number of degree n monic polynomials in GF(2)[x] with exactly k distinct factors in its unique factorization into irreducible polynomials. %C A329721 Observed row lengths are 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, ... %F A329721 G.f.: Product_{k>=1} (y/(1-x^k) - y + 1)^A001037(k). %e A329721 2; %e A329721 3, 1; %e A329721 4, 4; %e A329721 6, 9, 1; %e A329721 8, 20, 4; %e A329721 14, 35, 15; %e A329721 20, 70, 36, 2; %e A329721 36, 122, 90, 8; %e A329721 60, 226, 196, 30; %e A329721 108, 410, 414, 91, 1; %e A329721 ... %e A329721 T(5,3) = 4 because we have: x(x+1)(x^3+x+1), x(x+1)(x^3 +x^2+1), x^2(x+1)(x^2+x+1), x(x+1)^2(x^2+x+1). %t A329721 nn = 10; a = Table[1/m Sum[MoebiusMu[m/d] 2^d, {d, Divisors[m]}], {m, 1, %t A329721 nn}]; Grid[Map[Select[#, # > 0 &] &, Drop[CoefficientList[Series[Product[(u/(1 - z^m ) - u + 1)^a[[m]], {m, 1, nn}], {z, 0,nn}], {z, u}], 1]]] %Y A329721 Cf. A306945, A269456. %Y A329721 Row sums give A000079. %Y A329721 Column k=1 gives A000031. %K A329721 nonn,tabf %O A329721 1,1 %A A329721 _Geoffrey Critzer_, Nov 30 2019