A329734 a(n) = (10^(1 + floor((n-1) * log_10 2)) + 1)^n, n >= 0.
1, 11, 121, 1331, 14641, 10510100501, 1061520150601, 107213535210701, 1008028056070056028008001, 1009036084126126084036009001, 1010045120210252210120045010001, 100110055016503300462046203300165005500110001, 1001200660220049507920924079204950220006600120001
Offset: 0
Examples
a(9) = (10^3 + 1)^9 = 1009036084126126084036009001 = 1:009:036:084:126:126:084:036:009:001 (base 10^3, since 2^8 has 3 decimal digits).
Links
- OEIS Wiki, Pascal's triangle rows.
Programs
-
Mathematica
d[n_] := Floor[Log[10, 10*n]]; a[n_] := (10^(d[2^(n - 1)]) + 1)^n; Array[a, 12] (* Amiram Eldar, Nov 23 2019 *)
Formula
a(0) = 1; a(n) = (10^(d(2^(n-1))) + 1)^n, n >= 1, where d(2^(n-1)) = 1 + floor((n-1) * log_10 2) = A034887(n-1) is the number of [decimal] digits of 2^(n-1).
Comments