This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329737 #58 Sep 08 2022 08:46:24 %S A329737 101,103,107,109,307,401,503,509,601,607,701,709,809,907,11071,11087, %T A329737 11093,12037,12049,12097,13099,14029,14033,14051,14071,14081,14083, %U A329737 14087,15031,15053,15083,16057,16063,16067,16069,16097,17021,17033,17041,17047,17053 %N A329737 Cyclops primes that remain prime after being "blinded". %C A329737 There are 14 of these primes with 3 digits and 302 with 5 digits. %H A329737 Rodolfo Ruiz-Huidobro, <a href="/A329737/b329737.txt">Table of n, a(n) for n = 1..3194</a> %e A329737 The first term, a(1), is 101 because if you remove the "cyclops' eye" it remains a prime (11) and because 101 is the 1st cyclops prime. %e A329737 307 is a term because when you remove the "0" it remains a prime: 37. %o A329737 (Magma) a:=[]; f:=func<n|IsPrime(n) and IsOdd(#a) and a[(#a+1) div 2] eq 0 and not 0 in a[1..(#a-1) div 2] cat a[(#a+3) div 2..#a] where a is Intseq(n)>; g:=func<n|Seqint(a[1..(#a-1) div 2] cat a[(#a+3) div 2..#a]) where a is Intseq(n)>; for n in [1..20000] do if f(n) and IsPrime(g(n)) then Append(~a,n); end if; end for; a; // _Marius A. Burtea_, Nov 20 2019 %Y A329737 Intersection of A256186 and A134809. %K A329737 nonn,base,easy %O A329737 1,1 %A A329737 _Rodolfo Ruiz-Huidobro_, Nov 20 2019