This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329738 #9 Dec 30 2020 19:44:22 %S A329738 1,1,2,4,6,8,19,24,45,75,133,215,401,662,1177,2035,3587,6190,10933, %T A329738 18979,33339,58157,101958,178046,312088,545478,955321,1670994,2925717, %U A329738 5118560,8960946,15680074,27447350,48033502,84076143,147142496,257546243,450748484,788937192 %N A329738 Number of compositions of n whose run-lengths are all equal. %C A329738 A composition of n is a finite sequence of positive integers with sum n. %H A329738 Andrew Howroyd, <a href="/A329738/b329738.txt">Table of n, a(n) for n = 0..1000</a> %F A329738 a(n) = Sum_{d|n} A003242(d). %F A329738 a(n) = A329745(n) + A000005(n). %e A329738 The a(1) = 1 through a(6) = 19 compositions: %e A329738 (1) (2) (3) (4) (5) (6) %e A329738 (11) (12) (13) (14) (15) %e A329738 (21) (22) (23) (24) %e A329738 (111) (31) (32) (33) %e A329738 (121) (41) (42) %e A329738 (1111) (131) (51) %e A329738 (212) (123) %e A329738 (11111) (132) %e A329738 (141) %e A329738 (213) %e A329738 (222) %e A329738 (231) %e A329738 (312) %e A329738 (321) %e A329738 (1122) %e A329738 (1212) %e A329738 (2121) %e A329738 (2211) %e A329738 (111111) %t A329738 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Length/@Split[#]&]],{n,0,10}] %o A329738 (PARI) seq(n)={my(b=Vec(1/(1 - sum(k=1, n, x^k/(1+x^k) + O(x*x^n)))-1)); concat([1], vector(n, k, sumdiv(k, d, b[d])))} \\ _Andrew Howroyd_, Dec 30 2020 %Y A329738 Compositions with relatively prime run-lengths are A000740. %Y A329738 Compositions with equal multiplicities are A098504. %Y A329738 Compositions with equal differences are A175342. %Y A329738 Compositions with distinct run-lengths are A329739. %Y A329738 Cf. A003242, A008965, A107429, A164707, A238130, A242882, A274174, A329745, A329766. %K A329738 nonn %O A329738 0,3 %A A329738 _Gus Wiseman_, Nov 20 2019