This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329739 #10 Jul 06 2020 19:22:22 %S A329739 1,1,2,2,5,8,10,20,28,41,62,102,124,208,278,426,571,872,1158,1718, %T A329739 2306,3304,4402,6286,8446,11725,15644,21642,28636,38956,52296,70106, %U A329739 93224,124758,165266,218916,290583,381706,503174,659160,865020,1124458,1473912,1907298 %N A329739 Number of compositions of n whose run-lengths are all different. %C A329739 A composition of n is a finite sequence of positive integers with sum n. %e A329739 The a(1) = 1 through a(7) = 20 compositions: %e A329739 (1) (2) (3) (4) (5) (6) (7) %e A329739 (11) (111) (22) (113) (33) (115) %e A329739 (112) (122) (114) (133) %e A329739 (211) (221) (222) (223) %e A329739 (1111) (311) (411) (322) %e A329739 (1112) (1113) (331) %e A329739 (2111) (3111) (511) %e A329739 (11111) (11112) (1114) %e A329739 (21111) (1222) %e A329739 (111111) (2221) %e A329739 (4111) %e A329739 (11113) %e A329739 (11122) %e A329739 (22111) %e A329739 (31111) %e A329739 (111112) %e A329739 (111211) %e A329739 (112111) %e A329739 (211111) %e A329739 (1111111) %t A329739 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Length/@Split[#]&]],{n,0,10}] %Y A329739 The normal case is A329740. %Y A329739 The case of partitions is A098859. %Y A329739 Strict compositions are A032020. %Y A329739 Compositions with relatively prime run-lengths are A000740. %Y A329739 Compositions with distinct multiplicities are A242882. %Y A329739 Compositions with distinct differences are A325545. %Y A329739 Compositions with equal run-lengths are A329738. %Y A329739 Compositions with normal run-lengths are A329766. %Y A329739 Cf. A003242, A008965, A059966, A098504, A098859, A107429, A175342, A238130, A328592, A329745. %K A329739 nonn %O A329739 0,3 %A A329739 _Gus Wiseman_, Nov 20 2019 %E A329739 a(21)-a(26) from _Giovanni Resta_, Nov 22 2019 %E A329739 a(27)-a(43) from _Alois P. Heinz_, Jul 06 2020