cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329740 Number of compositions of n whose multiplicities are distinct and cover an initial interval of positive integers.

This page as a plain text file.
%I A329740 #8 Nov 21 2019 22:14:53
%S A329740 1,1,1,1,4,7,4,10,10,10,73,196,133,379,319,379,502,805,562,1108,13648,
%T A329740 51448,51691,115174,140011,178597,203617,329737,292300,456703,456160,
%U A329740 608386,633466,898186,823009,39014392,190352269,266293795,493345615,834326995,947714938
%N A329740 Number of compositions of n whose multiplicities are distinct and cover an initial interval of positive integers.
%C A329740 A composition of n is a finite sequence of positive integers with sum n.
%e A329740 The a(1) = 1 through a(9) = 10 compositions:
%e A329740   (1)  (2)  (3)  (4)      (5)      (6)      (7)      (8)      (9)
%e A329740                  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)  (1,1,7)
%e A329740                  (1,2,1)  (1,2,2)  (1,4,1)  (1,3,3)  (1,6,1)  (1,4,4)
%e A329740                  (2,1,1)  (1,3,1)  (4,1,1)  (1,5,1)  (2,2,4)  (1,7,1)
%e A329740                           (2,1,2)           (2,2,3)  (2,3,3)  (2,2,5)
%e A329740                           (2,2,1)           (2,3,2)  (2,4,2)  (2,5,2)
%e A329740                           (3,1,1)           (3,1,3)  (3,2,3)  (4,1,4)
%e A329740                                             (3,2,2)  (3,3,2)  (4,4,1)
%e A329740                                             (3,3,1)  (4,2,2)  (5,2,2)
%e A329740                                             (5,1,1)  (6,1,1)  (7,1,1)
%t A329740 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Range[Length[Union[#]]]==Sort[Length/@Split[Sort[#]]]&]],{n,0,10}]
%Y A329740 The version allowing repeated multiplicities is A329741.
%Y A329740 Complete compositions are A107429.
%Y A329740 Compositions whose multiplicities are distinct are A242882.
%Y A329740 Cf. A059966, A098504, A244164, A274174, A329739, A329766, A329748.
%K A329740 nonn
%O A329740 0,5
%A A329740 _Gus Wiseman_, Nov 21 2019
%E A329740 a(21)-a(40) from _Alois P. Heinz_, Nov 21 2019