This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329742 #42 Mar 30 2020 10:31:06 %S A329742 1,3,5,8,14,25,33,64,126,213,256,379,1704,1935,2292,8571,10942,12347, %T A329742 13298,15323,36719,46589,103715,185013,880694,1493008,3206674, %U A329742 12534781,14145077,22653912,24246374,33742399,65336924,298466597,566415148,1938289664,2122614029,4020755339,4219726754,16265396008,17003807756 %N A329742 Indices n of Riemann zeta zeros for successive records of the normalized delta defined as d(n) = (z(n+1)-z(n))*(log(z(n)/(2Pi))/(2Pi)) where z(n) is the imaginary part of the n-th Riemann zero. %C A329742 No more records up to n = 103800788359. %C A329742 d(17003807756) = 4.3018209763411. %C A329742 Successive records occur when gaps between two successive zeros are large. %C A329742 Recent record of normalized delta computed by Hiary at 2011 occurs for n=436677148707320393224019748290912 where d(n) = 5.77979. %C A329742 Conjectural next term: 77528045597. %C A329742 Indices of zeros for successive minimal records of the normalized delta see A328656. %H A329742 Artur Jasinski, <a href="/A329742/b329742.txt">Table of n, a(n) for n = 1..41</a> %H A329742 Ghaith Ayesh Hiary, <a href="http://dx.doi.org/10.4007/annals.2011.174.2.4">Fast methods to compute the Riemann zeta function</a>, Ann. of Math. (2) 174 (2011), no. 2, 891-946. MR 2831110 (2012g:11154). %H A329742 David Platt, <a href="/A329742/a329742.txt">Results computation of the largest relative gaps between successive zeta zeros</a>, 2020. %e A329742 n | a(n) | d(n) %e A329742 ---+---------+--------- %e A329742 1 | 1 | 0.88871 %e A329742 2 | 3 | 1.19034 %e A329742 3 | 5 | 1.22634 %e A329742 4 | 8 | 1.43763 %e A329742 5 | 14 | 1.54672 %e A329742 6 | 25 | 1.55244 %e A329742 7 | 33 | 1.74300 %e A329742 8 | 64 | 1.83656 %e A329742 9 | 126 | 1.95400 %e A329742 10 | 213 | 1.95626 %e A329742 11 | 256 | 1.99205 %e A329742 12 | 379 | 2.20138 %e A329742 13 | 1704 | 2.20198 %e A329742 14 | 1935 | 2.45843 %e A329742 15 | 2292 | 2.46772 %e A329742 16 | 8571 | 2.48347 %e A329742 17 | 10942 | 2.50594 %e A329742 18 | 12347 | 2.50648 %e A329742 19 | 13298 | 2.52517 %e A329742 20 | 15323 | 2.67728 %e A329742 21 | 36719 | 2.76188 %e A329742 22 | 46589 | 2.80523 %e A329742 23 | 103715 | 2.83121 %e A329742 24 | 185013 | 3.11058 %e A329742 25 | 880694 | 3.21426 %e A329742 26 | 1493008 | 3.30347 %t A329742 prec = 30; max = 0; aa = {}; Do[kk = N[Im[(ZetaZero[n + 1] - ZetaZero[n])],prec] (Log[N[Im[ZetaZero[n]], prec]/(2 Pi)]/(2 Pi)); %t A329742 If[kk > max, max = kk; AppendTo[aa, n]], {n, 1, 2000000}]; aa %Y A329742 Cf. A114856, A254297, A255739, A255742, A326502. %K A329742 nonn %O A329742 1,2 %A A329742 _Artur Jasinski_, Nov 20 2019 %E A329742 a(27)-a(41) computed by David Platt, Jan 03 2020