This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329744 #5 Nov 21 2019 10:43:41 %S A329744 1,1,1,1,1,2,1,2,3,2,1,1,6,6,2,1,3,15,9,4,0,1,1,22,22,16,2,0,1,3,41, %T A329744 38,37,8,0,0,1,2,72,69,86,26,0,0,0,1,3,129,124,175,78,2,0,0,0,1,1,213, %U A329744 226,367,202,14,0,0,0,0,1,5,395,376,750,469,52,0,0,0,0,0 %N A329744 Triangle read by rows where T(n,k) is the number of compositions of n > 0 with runs-resistance k, 0 <= k <= n - 1. %C A329744 A composition of n is a finite sequence of positive integers with sum n. %C A329744 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton. %H A329744 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %e A329744 Triangle begins: %e A329744 1 %e A329744 1 1 %e A329744 1 1 2 %e A329744 1 2 3 2 %e A329744 1 1 6 6 2 %e A329744 1 3 15 9 4 0 %e A329744 1 1 22 22 16 2 0 %e A329744 1 3 41 38 37 8 0 0 %e A329744 1 2 72 69 86 26 0 0 0 %e A329744 1 3 129 124 175 78 2 0 0 0 %e A329744 1 1 213 226 367 202 14 0 0 0 0 %e A329744 1 5 395 376 750 469 52 0 0 0 0 0 %e A329744 Row n = 6 counts the following compositions: %e A329744 (6) (33) (15) (114) (1131) %e A329744 (222) (24) (411) (1311) %e A329744 (111111) (42) (1113) (11121) %e A329744 (51) (1221) (12111) %e A329744 (123) (2112) %e A329744 (132) (3111) %e A329744 (141) (11112) %e A329744 (213) (11211) %e A329744 (231) (21111) %e A329744 (312) %e A329744 (321) %e A329744 (1122) %e A329744 (1212) %e A329744 (2121) %e A329744 (2211) %t A329744 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329744 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}] %Y A329744 Row sums are A000079. %Y A329744 Column k = 1 is A032741. %Y A329744 Column k = 2 is A329745. %Y A329744 Column k = n - 2 is A329743. %Y A329744 The version for partitions is A329746. %Y A329744 The version with rows reversed is A329750. %Y A329744 Cf. A000740, A008965, A098504, A242882, A318928, A329747. %K A329744 nonn,tabl %O A329744 1,6 %A A329744 _Gus Wiseman_, Nov 21 2019