This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329745 #9 Dec 30 2020 19:44:02 %S A329745 0,0,2,3,6,15,22,41,72,129,213,395,660,1173,2031,3582,6188,10927, %T A329745 18977,33333,58153,101954,178044,312080,545475,955317,1670990,2925711, %U A329745 5118558,8960938,15680072,27447344,48033498,84076139,147142492,257546234,450748482,788937188 %N A329745 Number of compositions of n with runs-resistance 2. %C A329745 A composition of n is a finite sequence of positive integers with sum n. %C A329745 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton. %C A329745 These are non-constant compositions with equal run-lengths (A329738). %H A329745 Andrew Howroyd, <a href="/A329745/b329745.txt">Table of n, a(n) for n = 1..1000</a> %F A329745 a(n) = A329738(n) - A000005(n). %F A329745 a(n) = Sum_{d|n} (A003242(d) - 1). - _Andrew Howroyd_, Dec 30 2020 %e A329745 The a(3) = 2 through a(6) = 15 compositions: %e A329745 (1,2) (1,3) (1,4) (1,5) %e A329745 (2,1) (3,1) (2,3) (2,4) %e A329745 (1,2,1) (3,2) (4,2) %e A329745 (4,1) (5,1) %e A329745 (1,3,1) (1,2,3) %e A329745 (2,1,2) (1,3,2) %e A329745 (1,4,1) %e A329745 (2,1,3) %e A329745 (2,3,1) %e A329745 (3,1,2) %e A329745 (3,2,1) %e A329745 (1,1,2,2) %e A329745 (1,2,1,2) %e A329745 (2,1,2,1) %e A329745 (2,2,1,1) %t A329745 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329745 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==2&]],{n,10}] %o A329745 (PARI) seq(n)={my(b=Vec(1/(1 - sum(k=1, n, x^k/(1+x^k) + O(x*x^n)))-1)); vector(n, k, sumdiv(k, d, b[d]-1))} \\ _Andrew Howroyd_, Dec 30 2020 %Y A329745 Column k = 2 of A329744. %Y A329745 Column k = n - 2 of A329750. %Y A329745 Cf. A000740, A003242, A008965, A098504, A242882, A318928, A329743, A329746, A329747, A329767. %K A329745 nonn %O A329745 1,3 %A A329745 _Gus Wiseman_, Nov 21 2019 %E A329745 Terms a(21) and beyond from _Andrew Howroyd_, Dec 30 2020