This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329746 #10 Jan 19 2023 22:35:17 %S A329746 1,1,1,1,1,1,1,2,1,1,1,1,2,3,0,1,3,4,3,0,0,1,1,4,8,1,0,0,1,3,6,10,2,0, %T A329746 0,0,1,2,8,13,6,0,0,0,0,1,3,11,20,7,0,0,0,0,0,1,1,11,29,14,0,0,0,0,0, %U A329746 0,1,5,19,31,20,1,0,0,0,0,0,0 %N A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1. %C A329746 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton. %H A329746 Andrew Howroyd, <a href="/A329746/b329746.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %H A329746 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %e A329746 Triangle begins: %e A329746 1 %e A329746 1 1 %e A329746 1 1 1 %e A329746 1 2 1 1 %e A329746 1 1 2 3 0 %e A329746 1 3 4 3 0 0 %e A329746 1 1 4 8 1 0 0 %e A329746 1 3 6 10 2 0 0 0 %e A329746 1 2 8 13 6 0 0 0 0 %e A329746 1 3 11 20 7 0 0 0 0 0 %e A329746 1 1 11 29 14 0 0 0 0 0 0 %e A329746 1 5 19 31 20 1 0 0 0 0 0 0 %e A329746 1 1 17 50 30 2 0 0 0 0 0 0 0 %e A329746 1 3 25 64 37 5 0 0 0 0 0 0 0 0 %e A329746 1 3 29 74 62 7 0 0 0 0 0 0 0 0 0 %e A329746 Row n = 8 counts the following partitions: %e A329746 (8) (44) (53) (332) (4211) %e A329746 (2222) (62) (422) (32111) %e A329746 (11111111) (71) (611) %e A329746 (431) (3221) %e A329746 (521) (5111) %e A329746 (3311) (22211) %e A329746 (41111) %e A329746 (221111) %e A329746 (311111) %e A329746 (2111111) %t A329746 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329746 Table[Length[Select[IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}] %o A329746 (PARI) \\ rr(p) gives runs resistance of partition. %o A329746 rr(p)={my(r=0); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L, i-k); k=i)); p=Vec(L); r++); r} %o A329746 row(n)={my(v=vector(n)); forpart(p=n, v[1+rr(Vec(p))]++); v} %o A329746 { for(n=1, 10, print(row(n))) } \\ _Andrew Howroyd_, Jan 19 2023 %Y A329746 Row sums are A000041. %Y A329746 Column k = 1 is A032741. %Y A329746 Column k = 2 is A329745. %Y A329746 A similar invariant is frequency depth; see A323014, A325280. %Y A329746 The version for compositions is A329744. %Y A329746 The version for binary words is A329767. %Y A329746 Cf. A098504, A182850, A225485, A242882, A318928, A325410, A329747. %K A329746 nonn,tabl %O A329746 1,8 %A A329746 _Gus Wiseman_, Nov 21 2019