cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

This page as a plain text file.
%I A329746 #10 Jan 19 2023 22:35:17
%S A329746 1,1,1,1,1,1,1,2,1,1,1,1,2,3,0,1,3,4,3,0,0,1,1,4,8,1,0,0,1,3,6,10,2,0,
%T A329746 0,0,1,2,8,13,6,0,0,0,0,1,3,11,20,7,0,0,0,0,0,1,1,11,29,14,0,0,0,0,0,
%U A329746 0,1,5,19,31,20,1,0,0,0,0,0,0
%N A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1.
%C A329746 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.
%H A329746 Andrew Howroyd, <a href="/A329746/b329746.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%H A329746 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003.
%e A329746 Triangle begins:
%e A329746   1
%e A329746   1  1
%e A329746   1  1  1
%e A329746   1  2  1  1
%e A329746   1  1  2  3  0
%e A329746   1  3  4  3  0  0
%e A329746   1  1  4  8  1  0  0
%e A329746   1  3  6 10  2  0  0  0
%e A329746   1  2  8 13  6  0  0  0  0
%e A329746   1  3 11 20  7  0  0  0  0  0
%e A329746   1  1 11 29 14  0  0  0  0  0  0
%e A329746   1  5 19 31 20  1  0  0  0  0  0  0
%e A329746   1  1 17 50 30  2  0  0  0  0  0  0  0
%e A329746   1  3 25 64 37  5  0  0  0  0  0  0  0  0
%e A329746   1  3 29 74 62  7  0  0  0  0  0  0  0  0  0
%e A329746 Row n = 8 counts the following partitions:
%e A329746   (8)  (44)        (53)    (332)      (4211)
%e A329746        (2222)      (62)    (422)      (32111)
%e A329746        (11111111)  (71)    (611)
%e A329746                    (431)   (3221)
%e A329746                    (521)   (5111)
%e A329746                    (3311)  (22211)
%e A329746                            (41111)
%e A329746                            (221111)
%e A329746                            (311111)
%e A329746                            (2111111)
%t A329746 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
%t A329746 Table[Length[Select[IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]
%o A329746 (PARI) \\ rr(p) gives runs resistance of partition.
%o A329746 rr(p)={my(r=0); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L, i-k); k=i)); p=Vec(L); r++); r}
%o A329746 row(n)={my(v=vector(n)); forpart(p=n, v[1+rr(Vec(p))]++); v}
%o A329746 { for(n=1, 10, print(row(n))) } \\ _Andrew Howroyd_, Jan 19 2023
%Y A329746 Row sums are A000041.
%Y A329746 Column k = 1 is A032741.
%Y A329746 Column k = 2 is A329745.
%Y A329746 A similar invariant is frequency depth; see A323014, A325280.
%Y A329746 The version for compositions is A329744.
%Y A329746 The version for binary words is A329767.
%Y A329746 Cf. A098504, A182850, A225485, A242882, A318928, A325410, A329747.
%K A329746 nonn,tabl
%O A329746 1,8
%A A329746 _Gus Wiseman_, Nov 21 2019