This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329750 #5 Nov 21 2019 22:15:22 %S A329750 1,1,1,2,1,1,2,3,2,1,2,6,6,1,1,0,4,9,15,3,1,0,2,16,22,22,1,1,0,0,8,37, %T A329750 38,41,3,1,0,0,0,26,86,69,72,2,1,0,0,0,2,78,175,124,129,3,1,0,0,0,0, %U A329750 14,202,367,226,213,1,1,0,0,0,0,0,52,469,750,376,395,5,1 %N A329750 Triangle read by rows where T(n,k) is the number of compositions of n >= 1 with runs-resistance n - k, 1 <= k <= n. %C A329750 A composition of n is a finite sequence of positive integers with sum n. %C A329750 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton. %e A329750 Triangle begins: %e A329750 1 %e A329750 1 1 %e A329750 2 1 1 %e A329750 2 3 2 1 %e A329750 2 6 6 1 1 %e A329750 0 4 9 15 3 1 %e A329750 0 2 16 22 22 1 1 %e A329750 0 0 8 37 38 41 3 1 %e A329750 0 0 0 26 86 69 72 2 1 %e A329750 0 0 0 2 78 175 124 129 3 1 %e A329750 0 0 0 0 14 202 367 226 213 1 1 %e A329750 0 0 0 0 0 52 469 750 376 395 5 1 %e A329750 Row n = 6 counts the following compositions: %e A329750 (1,1,3,1) (1,1,4) (1,5) (3,3) (6) %e A329750 (1,3,1,1) (4,1,1) (2,4) (2,2,2) %e A329750 (1,1,1,2,1) (1,1,1,3) (4,2) (1,1,1,1,1,1) %e A329750 (1,2,1,1,1) (1,2,2,1) (5,1) %e A329750 (2,1,1,2) (1,2,3) %e A329750 (3,1,1,1) (1,3,2) %e A329750 (1,1,1,1,2) (1,4,1) %e A329750 (1,1,2,1,1) (2,1,3) %e A329750 (2,1,1,1,1) (2,3,1) %e A329750 (3,1,2) %e A329750 (3,2,1) %e A329750 (1,1,2,2) %e A329750 (1,2,1,2) %e A329750 (2,1,2,1) %e A329750 (2,2,1,1) %t A329750 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329750 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-k&]],{n,10},{k,n}] %Y A329750 Row sums are A000079. %Y A329750 Column sums are A329768. %Y A329750 The version with rows reversed is A329744. %Y A329750 Cf. A000740, A008965, A098504, A242882, A318928, A329745, A329746, A329747, A329767. %K A329750 nonn,tabl %O A329750 1,4 %A A329750 _Gus Wiseman_, Nov 21 2019