cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329766 Number of compositions of n whose run-lengths cover an initial interval of positive integers.

This page as a plain text file.
%I A329766 #10 Jul 06 2020 19:28:22
%S A329766 1,1,1,3,6,13,21,48,89,180,355,707,1382,2758,5448,10786,21391,42476,
%T A329766 84291,167516,333036,662153,1317687,2622706,5221951,10400350,20720877,
%U A329766 41288823,82294979,164052035,327088649,652238016,1300788712,2594486045,5175378128,10324522020
%N A329766 Number of compositions of n whose run-lengths cover an initial interval of positive integers.
%C A329766 A composition of n is a finite sequence of positive integers with sum n.
%e A329766 The a(0) = 1 through a(5) = 13 compositions:
%e A329766   ()  (1)  (2)  (3)    (4)      (5)
%e A329766                 (1,2)  (1,3)    (1,4)
%e A329766                 (2,1)  (3,1)    (2,3)
%e A329766                        (1,1,2)  (3,2)
%e A329766                        (1,2,1)  (4,1)
%e A329766                        (2,1,1)  (1,1,3)
%e A329766                                 (1,2,2)
%e A329766                                 (1,3,1)
%e A329766                                 (2,1,2)
%e A329766                                 (2,2,1)
%e A329766                                 (3,1,1)
%e A329766                                 (1,1,2,1)
%e A329766                                 (1,2,1,1)
%t A329766 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A329766 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[Length/@Split[#]]&]],{n,0,10}]
%Y A329766 Looking at multiplicities instead of run-lengths gives A329741.
%Y A329766 The complete case is A329749.
%Y A329766 Complete compositions are A107429.
%Y A329766 Cf. A000740, A008965, A242882, A244164, A274174, A329738, A329739, A329740, A329744, A329748.
%K A329766 nonn
%O A329766 0,4
%A A329766 _Gus Wiseman_, Nov 20 2019
%E A329766 a(21)-a(26) from _Giovanni Resta_, Nov 22 2019
%E A329766 a(27)-a(35) from _Alois P. Heinz_, Jul 06 2020