This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329774 #19 Dec 06 2019 13:39:30 %S A329774 1,2,3,4,7,10,13,22,31,40,67,94,121,202,283,364,607,850,1093,1822, %T A329774 2551,3280,5467,7654,9841,16402,22963,29524,49207,68890,88573,147622, %U A329774 206671,265720,442867,620014,797161,1328602,1860043,2391484,3985807 %N A329774 a(n) = n+1 for n <= 2; otherwise a(n) = 3*a(n-3)+1. %C A329774 _Robert Fathauer_ observed that if the "warp and woof" construction used by Jim Conant in his recursive dissection of a square (see A328078) is applied to a triangle, one obtains the Sierpinski gasket. %C A329774 The present sequence gives the number of regions after the n-th generation of this dissection of a triangle. %D A329774 Robert Fathauer, Email to N. J. A. Sloane, Oct 14 2019. %H A329774 Colin Barker, <a href="/A329774/b329774.txt">Table of n, a(n) for n = 0..1000</a> %H A329774 N. J. A. Sloane, <a href="/A329774/a329774.pdf">Illustration of initial terms.</a> %H A329774 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,3,-3). %F A329774 From _Colin Barker_, Nov 27 2019: (Start) %F A329774 G.f.: (1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)). %F A329774 a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) for n>3. %F A329774 (End) %p A329774 f:=proc(n) option remember; %p A329774 if n<=2 then n+1 else 3*f(n-3)+1; fi; end; %p A329774 [seq(f(n),n=0..50)]; %o A329774 (PARI) Vec((1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)) + O(x^40)) \\ _Colin Barker_, Nov 27 2019 %Y A329774 A mixture of A003462, A060816, and A237930. Cf. A328078. %K A329774 nonn,easy %O A329774 0,2 %A A329774 _N. J. A. Sloane_, Nov 27 2019